Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
11 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐺 ∈ 𝑇 ) |
12 |
10
|
cdlemk41 |
⊢ ( 𝐺 ∈ 𝑇 → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
14 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ) |
15 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
16 |
|
simp21r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
17 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑏 ∈ 𝑇 ) |
18 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
19 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
20 |
1 2 3 4 5 6 7 8 9
|
cdlemkfid2N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑍 = ( 𝑏 ‘ 𝑃 ) ) |
21 |
14 15 16 17 18 19 20
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑍 = ( 𝑏 ‘ 𝑃 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) = ( ( 𝑏 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) |
23 |
22
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑏 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) ) |
24 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
25 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → 𝑏 ≠ ( I ↾ 𝐵 ) ) |
26 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
27 |
26
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑏 ) ) |
28 |
1 2 3 4 5 6 7 8
|
cdlemkfid1N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑏 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑏 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) = ( 𝐺 ‘ 𝑃 ) ) |
29 |
24 17 25 11 27 19 28
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( 𝑅 ‘ 𝐺 ) ) ∧ ( ( 𝑏 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝑏 ) ) ) ) = ( 𝐺 ‘ 𝑃 ) ) |
30 |
13 23 29
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 = 𝑁 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑌 = ( 𝐺 ‘ 𝑃 ) ) |