| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
simp22 |
|
| 12 |
10
|
cdlemk41 |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
simp1 |
|
| 15 |
|
simp21l |
|
| 16 |
|
simp21r |
|
| 17 |
|
simp23l |
|
| 18 |
|
simp31 |
|
| 19 |
|
simp33 |
|
| 20 |
1 2 3 4 5 6 7 8 9
|
cdlemkfid2N |
|
| 21 |
14 15 16 17 18 19 20
|
syl132anc |
|
| 22 |
21
|
oveq1d |
|
| 23 |
22
|
oveq2d |
|
| 24 |
|
simp1l |
|
| 25 |
|
simp23r |
|
| 26 |
|
simp32 |
|
| 27 |
26
|
necomd |
|
| 28 |
1 2 3 4 5 6 7 8
|
cdlemkfid1N |
|
| 29 |
24 17 25 11 27 19 28
|
syl132anc |
|
| 30 |
13 23 29
|
3eqtrd |
|