Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5b.s |
|
12 |
|
cdlemk5b.u1 |
|
13 |
|
simp11 |
|
14 |
|
simp23 |
|
15 |
|
simp12l |
|
16 |
|
simp3l |
|
17 |
|
simp21 |
|
18 |
|
simp3r2 |
|
19 |
|
simp12r |
|
20 |
|
simp3r1 |
|
21 |
19 20
|
jca |
|
22 |
|
simp22 |
|
23 |
1 2 3 4 5 6 7 8 11
|
cdlemk30 |
|
24 |
13 14 15 16 17 18 21 22 23
|
syl233anc |
|
25 |
24 9
|
eqtr4di |
|
26 |
25
|
oveq1d |
|
27 |
26
|
oveq2d |
|
28 |
15 16 17
|
3jca |
|
29 |
|
simp13l |
|
30 |
|
simp3r3 |
|
31 |
18 30
|
jca |
|
32 |
|
simp13r |
|
33 |
19 20 32
|
3jca |
|
34 |
1 2 3 4 5 6 7 8 11 12
|
cdlemk31 |
|
35 |
13 14 28 29 31 33 22 34
|
syl223anc |
|
36 |
10
|
cdlemk41 |
|
37 |
29 36
|
syl |
|
38 |
27 35 37
|
3eqtr4rd |
|