Metamath Proof Explorer


Theorem cdlemky

Description: Part of proof of Lemma K of Crawley p. 118. TODO: clean up ( b Y G ) stuff. V represents Y in cdlemk31 . (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5b.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk5b.u1 V=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
Assertion cdlemky KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=bVGP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5b.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
12 cdlemk5b.u1 V=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
13 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGKHLWH
14 simp23 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRF=RN
15 simp12l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFT
16 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbT
17 simp21 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGNT
18 simp3r2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRbRF
19 simp12r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFIB
20 simp3r1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbIB
21 19 20 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFIBbIB
22 simp22 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGPA¬P˙W
23 1 2 3 4 5 6 7 8 11 cdlemk30 KHLWHRF=RNFTbTNTRbRFFIBbIBPA¬P˙WSbP=P˙Rb˙NP˙RbF-1
24 13 14 15 16 17 18 21 22 23 syl233anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGSbP=P˙Rb˙NP˙RbF-1
25 24 9 eqtr4di KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGSbP=Z
26 25 oveq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGSbP˙RGb-1=Z˙RGb-1
27 26 oveq2d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGP˙RG˙SbP˙RGb-1=P˙RG˙Z˙RGb-1
28 15 16 17 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFTbTNT
29 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGT
30 simp3r3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRbRG
31 18 30 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGRbRFRbRG
32 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGGIB
33 19 20 32 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGFIBbIBGIB
34 1 2 3 4 5 6 7 8 11 12 cdlemk31 KHLWHRF=RNFTbTNTGTRbRFRbRGFIBbIBGIBPA¬P˙WbVGP=P˙RG˙SbP˙RGb-1
35 13 14 28 29 31 33 22 34 syl223anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbVGP=P˙RG˙SbP˙RGb-1
36 10 cdlemk41 GTG/gY=P˙RG˙Z˙RGb-1
37 29 36 syl KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=P˙RG˙Z˙RGb-1
38 27 35 37 3eqtr4rd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=bVGP