Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
10 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G e. T ) |
11 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
12 |
2 3 5 6 7 8
|
trljat3 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` G ) ) = ( ( G ` P ) .\/ ( R ` G ) ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` G ) ) = ( ( G ` P ) .\/ ( R ` G ) ) ) |
14 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> K e. HL ) |
15 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) |
16 |
|
simp3rl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> P e. A ) |
17 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |
18 |
9 15 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F ` P ) e. A ) |
19 |
2 5 6 7
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ P e. A ) -> ( G ` P ) e. A ) |
20 |
9 10 16 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( G ` P ) e. A ) |
21 |
3 5
|
hlatjcom |
|- ( ( K e. HL /\ ( F ` P ) e. A /\ ( G ` P ) e. A ) -> ( ( F ` P ) .\/ ( G ` P ) ) = ( ( G ` P ) .\/ ( F ` P ) ) ) |
22 |
14 18 20 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( F ` P ) .\/ ( G ` P ) ) = ( ( G ` P ) .\/ ( F ` P ) ) ) |
23 |
2 3 5 6 7 8
|
trlcoabs2N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) = ( ( F ` P ) .\/ ( G ` P ) ) ) |
24 |
9 15 10 11 23
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) = ( ( F ` P ) .\/ ( G ` P ) ) ) |
25 |
6 7 8
|
trlcocnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) -> ( R ` ( F o. `' G ) ) = ( R ` ( G o. `' F ) ) ) |
26 |
9 15 10 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( F o. `' G ) ) = ( R ` ( G o. `' F ) ) ) |
27 |
26
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( G ` P ) .\/ ( R ` ( F o. `' G ) ) ) = ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) |
28 |
2 3 5 6 7 8
|
trlcoabs2N |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) .\/ ( R ` ( F o. `' G ) ) ) = ( ( G ` P ) .\/ ( F ` P ) ) ) |
29 |
9 10 15 11 28
|
syl121anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( G ` P ) .\/ ( R ` ( F o. `' G ) ) ) = ( ( G ` P ) .\/ ( F ` P ) ) ) |
30 |
27 29
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) = ( ( G ` P ) .\/ ( F ` P ) ) ) |
31 |
22 24 30
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) = ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) |
32 |
13 31
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( ( ( G ` P ) .\/ ( R ` G ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
33 |
1 6 7 8
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) e. B ) |
34 |
9 10 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) e. B ) |
35 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> W e. H ) |
36 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
37 |
5 6 7 8
|
trlcocnvat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ F e. T ) /\ ( R ` G ) =/= ( R ` F ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
38 |
14 35 10 15 36 37
|
syl221anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
39 |
2 5 6 7
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
40 |
9 10 11 39
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) |
41 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
42 |
9 15 41
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> `' F e. T ) |
43 |
6 7 8
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
44 |
9 15 43
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
45 |
36 44
|
neeqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` `' F ) ) |
46 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) ) |
47 |
1 6 7
|
ltrncnvnid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> `' F =/= ( _I |` B ) ) |
48 |
9 15 46 47
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> `' F =/= ( _I |` B ) ) |
49 |
1 6 7 8
|
trlcone |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ `' F e. T ) /\ ( ( R ` G ) =/= ( R ` `' F ) /\ `' F =/= ( _I |` B ) ) ) -> ( R ` G ) =/= ( R ` ( G o. `' F ) ) ) |
50 |
9 10 42 45 48 49
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` ( G o. `' F ) ) ) |
51 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
52 |
51 5 6 7 8
|
trlator0 |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( ( R ` G ) e. A \/ ( R ` G ) = ( 0. ` K ) ) ) |
53 |
9 10 52
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( R ` G ) e. A \/ ( R ` G ) = ( 0. ` K ) ) ) |
54 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W ) |
55 |
14 35 10 54
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) .<_ W ) |
56 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ `' F e. T ) -> ( G o. `' F ) e. T ) |
57 |
9 10 42 56
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( G o. `' F ) e. T ) |
58 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G o. `' F ) e. T ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
59 |
9 57 58
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
60 |
2 3 51 5 6
|
lhp2at0nle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) /\ ( R ` G ) =/= ( R ` ( G o. `' F ) ) ) /\ ( ( ( R ` G ) e. A \/ ( R ` G ) = ( 0. ` K ) ) /\ ( R ` G ) .<_ W ) /\ ( ( R ` ( G o. `' F ) ) e. A /\ ( R ` ( G o. `' F ) ) .<_ W ) ) -> -. ( R ` ( G o. `' F ) ) .<_ ( ( G ` P ) .\/ ( R ` G ) ) ) |
61 |
9 40 50 53 55 38 59 60
|
syl322anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> -. ( R ` ( G o. `' F ) ) .<_ ( ( G ` P ) .\/ ( R ` G ) ) ) |
62 |
1 2 3 4 5
|
2llnma1b |
|- ( ( K e. HL /\ ( ( R ` G ) e. B /\ ( G ` P ) e. A /\ ( R ` ( G o. `' F ) ) e. A ) /\ -. ( R ` ( G o. `' F ) ) .<_ ( ( G ` P ) .\/ ( R ` G ) ) ) -> ( ( ( G ` P ) .\/ ( R ` G ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( G ` P ) ) |
63 |
14 34 20 38 61 62
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( G ` P ) .\/ ( R ` G ) ) ./\ ( ( G ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( G ` P ) ) |
64 |
32 63
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ G e. T ) /\ ( ( R ` G ) =/= ( R ` F ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( P .\/ ( R ` G ) ) ./\ ( ( F ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( G ` P ) ) |