Metamath Proof Explorer


Theorem latj32

Description: Swap 2nd and 3rd members of lattice join. Lemma 2.2 in MegPav2002 p. 362. (Contributed by NM, 2-Dec-2011)

Ref Expression
Hypotheses latjass.b B=BaseK
latjass.j ˙=joinK
Assertion latj32 KLatXBYBZBX˙Y˙Z=X˙Z˙Y

Proof

Step Hyp Ref Expression
1 latjass.b B=BaseK
2 latjass.j ˙=joinK
3 1 2 latjcom KLatYBZBY˙Z=Z˙Y
4 3 3adant3r1 KLatXBYBZBY˙Z=Z˙Y
5 4 oveq2d KLatXBYBZBX˙Y˙Z=X˙Z˙Y
6 1 2 latjass KLatXBYBZBX˙Y˙Z=X˙Y˙Z
7 simpr1 KLatXBYBZBXB
8 simpr3 KLatXBYBZBZB
9 simpr2 KLatXBYBZBYB
10 7 8 9 3jca KLatXBYBZBXBZBYB
11 1 2 latjass KLatXBZBYBX˙Z˙Y=X˙Z˙Y
12 10 11 syldan KLatXBYBZBX˙Z˙Y=X˙Z˙Y
13 5 6 12 3eqtr4d KLatXBYBZBX˙Y˙Z=X˙Z˙Y