Description: Substitution version of cdlemk35 . (Contributed by NM, 31-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
cdlemk5.u | |
||
Assertion | cdlemk35u | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | cdlemk5.u | |
|
13 | simpr | |
|
14 | simpl23 | |
|
15 | 11 12 | cdlemk40t | |
16 | 13 14 15 | syl2anc | |
17 | 16 14 | eqeltrd | |
18 | simpr | |
|
19 | simpl23 | |
|
20 | 11 12 | cdlemk40f | |
21 | 18 19 20 | syl2anc | |
22 | simpl1l | |
|
23 | simpl21 | |
|
24 | simpl22 | |
|
25 | simpl1r | |
|
26 | 1 6 7 8 | trlnid | |
27 | 22 23 24 18 25 26 | syl122anc | |
28 | 23 27 | jca | |
29 | simpl3 | |
|
30 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk35s-id | |
31 | 22 28 19 24 29 25 30 | syl132anc | |
32 | 21 31 | eqeltrd | |
33 | 17 32 | pm2.61dane | |