Metamath Proof Explorer


Theorem cdlemk35u

Description: Substitution version of cdlemk35 . (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk35u KHLWHRF=RNFTNTGTPA¬P˙WUGT

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simpr KHLWHRF=RNFTNTGTPA¬P˙WF=NF=N
14 simpl23 KHLWHRF=RNFTNTGTPA¬P˙WF=NGT
15 11 12 cdlemk40t F=NGTUG=G
16 13 14 15 syl2anc KHLWHRF=RNFTNTGTPA¬P˙WF=NUG=G
17 16 14 eqeltrd KHLWHRF=RNFTNTGTPA¬P˙WF=NUGT
18 simpr KHLWHRF=RNFTNTGTPA¬P˙WFNFN
19 simpl23 KHLWHRF=RNFTNTGTPA¬P˙WFNGT
20 11 12 cdlemk40f FNGTUG=G/gX
21 18 19 20 syl2anc KHLWHRF=RNFTNTGTPA¬P˙WFNUG=G/gX
22 simpl1l KHLWHRF=RNFTNTGTPA¬P˙WFNKHLWH
23 simpl21 KHLWHRF=RNFTNTGTPA¬P˙WFNFT
24 simpl22 KHLWHRF=RNFTNTGTPA¬P˙WFNNT
25 simpl1r KHLWHRF=RNFTNTGTPA¬P˙WFNRF=RN
26 1 6 7 8 trlnid KHLWHFTNTFNRF=RNFIB
27 22 23 24 18 25 26 syl122anc KHLWHRF=RNFTNTGTPA¬P˙WFNFIB
28 23 27 jca KHLWHRF=RNFTNTGTPA¬P˙WFNFTFIB
29 simpl3 KHLWHRF=RNFTNTGTPA¬P˙WFNPA¬P˙W
30 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id KHLWHFTFIBGTNTPA¬P˙WRF=RNG/gXT
31 22 28 19 24 29 25 30 syl132anc KHLWHRF=RNFTNTGTPA¬P˙WFNG/gXT
32 21 31 eqeltrd KHLWHRF=RNFTNTGTPA¬P˙WFNUGT
33 17 32 pm2.61dane KHLWHRF=RNFTNTGTPA¬P˙WUGT