Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
cdlemk5.u |
|
13 |
|
simp11 |
|
14 |
|
simp21l |
|
15 |
|
simp12 |
|
16 |
|
simp13 |
|
17 |
|
simp21r |
|
18 |
1 6 7 8
|
trlnid |
|
19 |
13 15 16 17 14 18
|
syl122anc |
|
20 |
15 19 16
|
3jca |
|
21 |
|
simp22 |
|
22 |
|
simp23 |
|
23 |
|
simp3 |
|
24 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk55 |
|
25 |
13 14 20 21 22 23 24
|
syl231anc |
|
26 |
6 7
|
ltrnco |
|
27 |
13 21 22 26
|
syl3anc |
|
28 |
11 12
|
cdlemk40f |
|
29 |
17 27 28
|
syl2anc |
|
30 |
11 12
|
cdlemk40f |
|
31 |
17 21 30
|
syl2anc |
|
32 |
11 12
|
cdlemk40f |
|
33 |
17 22 32
|
syl2anc |
|
34 |
31 33
|
coeq12d |
|
35 |
25 29 34
|
3eqtr4d |
|