Metamath Proof Explorer


Theorem cdlemk55u

Description: Part of proof of Lemma K of Crawley p. 118. Line 11, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk55u KHLWHFTNTRF=RNGTITPA¬P˙WUGI=UGUI

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simpr KHLWHFTNTRF=RNGTITPA¬P˙WF=NF=N
14 simp11 KHLWHFTNTRF=RNGTITPA¬P˙WKHLWH
15 simp22 KHLWHFTNTRF=RNGTITPA¬P˙WGT
16 simp23 KHLWHFTNTRF=RNGTITPA¬P˙WIT
17 6 7 ltrnco KHLWHGTITGIT
18 14 15 16 17 syl3anc KHLWHFTNTRF=RNGTITPA¬P˙WGIT
19 18 adantr KHLWHFTNTRF=RNGTITPA¬P˙WF=NGIT
20 11 12 cdlemk40t F=NGITUGI=GI
21 13 19 20 syl2anc KHLWHFTNTRF=RNGTITPA¬P˙WF=NUGI=GI
22 simpl22 KHLWHFTNTRF=RNGTITPA¬P˙WF=NGT
23 11 12 cdlemk40t F=NGTUG=G
24 13 22 23 syl2anc KHLWHFTNTRF=RNGTITPA¬P˙WF=NUG=G
25 simpl23 KHLWHFTNTRF=RNGTITPA¬P˙WF=NIT
26 11 12 cdlemk40t F=NITUI=I
27 13 25 26 syl2anc KHLWHFTNTRF=RNGTITPA¬P˙WF=NUI=I
28 24 27 coeq12d KHLWHFTNTRF=RNGTITPA¬P˙WF=NUGUI=GI
29 21 28 eqtr4d KHLWHFTNTRF=RNGTITPA¬P˙WF=NUGI=UGUI
30 simpl1 KHLWHFTNTRF=RNGTITPA¬P˙WFNKHLWHFTNT
31 simpl21 KHLWHFTNTRF=RNGTITPA¬P˙WFNRF=RN
32 simpr KHLWHFTNTRF=RNGTITPA¬P˙WFNFN
33 31 32 jca KHLWHFTNTRF=RNGTITPA¬P˙WFNRF=RNFN
34 simpl22 KHLWHFTNTRF=RNGTITPA¬P˙WFNGT
35 simpl23 KHLWHFTNTRF=RNGTITPA¬P˙WFNIT
36 simpl3 KHLWHFTNTRF=RNGTITPA¬P˙WFNPA¬P˙W
37 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk55u1 KHLWHFTNTRF=RNFNGTITPA¬P˙WUGI=UGUI
38 30 33 34 35 36 37 syl131anc KHLWHFTNTRF=RNGTITPA¬P˙WFNUGI=UGUI
39 29 38 pm2.61dane KHLWHFTNTRF=RNGTITPA¬P˙WUGI=UGUI