Metamath Proof Explorer


Theorem cdlemk55u

Description: Part of proof of Lemma K of Crawley p. 118. Line 11, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
cdlemk5.u U = g T if F = N g X
Assertion cdlemk55u K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W U G I = U G U I

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 cdlemk5.u U = g T if F = N g X
13 simpr K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N F = N
14 simp11 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W K HL W H
15 simp22 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W G T
16 simp23 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W I T
17 6 7 ltrnco K HL W H G T I T G I T
18 14 15 16 17 syl3anc K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W G I T
19 18 adantr K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N G I T
20 11 12 cdlemk40t F = N G I T U G I = G I
21 13 19 20 syl2anc K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N U G I = G I
22 simpl22 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N G T
23 11 12 cdlemk40t F = N G T U G = G
24 13 22 23 syl2anc K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N U G = G
25 simpl23 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N I T
26 11 12 cdlemk40t F = N I T U I = I
27 13 25 26 syl2anc K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N U I = I
28 24 27 coeq12d K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N U G U I = G I
29 21 28 eqtr4d K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F = N U G I = U G U I
30 simpl1 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N K HL W H F T N T
31 simpl21 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N R F = R N
32 simpr K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N F N
33 31 32 jca K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N R F = R N F N
34 simpl22 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N G T
35 simpl23 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N I T
36 simpl3 K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N P A ¬ P ˙ W
37 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk55u1 K HL W H F T N T R F = R N F N G T I T P A ¬ P ˙ W U G I = U G U I
38 30 33 34 35 36 37 syl131anc K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W F N U G I = U G U I
39 29 38 pm2.61dane K HL W H F T N T R F = R N G T I T P A ¬ P ˙ W U G I = U G U I