Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
|
cdlemk5.u |
|- U = ( g e. T |-> if ( F = N , g , X ) ) |
13 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> F = N ) |
14 |
|
simpl23 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> G e. T ) |
15 |
11 12
|
cdlemk40t |
|- ( ( F = N /\ G e. T ) -> ( U ` G ) = G ) |
16 |
13 14 15
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( U ` G ) = G ) |
17 |
16 14
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F = N ) -> ( U ` G ) e. T ) |
18 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> F =/= N ) |
19 |
|
simpl23 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> G e. T ) |
20 |
11 12
|
cdlemk40f |
|- ( ( F =/= N /\ G e. T ) -> ( U ` G ) = [_ G / g ]_ X ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( U ` G ) = [_ G / g ]_ X ) |
22 |
|
simpl1l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( K e. HL /\ W e. H ) ) |
23 |
|
simpl21 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> F e. T ) |
24 |
|
simpl22 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> N e. T ) |
25 |
|
simpl1r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( R ` F ) = ( R ` N ) ) |
26 |
1 6 7 8
|
trlnid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( F =/= N /\ ( R ` F ) = ( R ` N ) ) ) -> F =/= ( _I |` B ) ) |
27 |
22 23 24 18 25 26
|
syl122anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> F =/= ( _I |` B ) ) |
28 |
23 27
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( F e. T /\ F =/= ( _I |` B ) ) ) |
29 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( P e. A /\ -. P .<_ W ) ) |
30 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ G / g ]_ X e. T ) |
31 |
22 28 19 24 29 25 30
|
syl132anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> [_ G / g ]_ X e. T ) |
32 |
21 31
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) /\ F =/= N ) -> ( U ` G ) e. T ) |
33 |
17 32
|
pm2.61dane |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F e. T /\ N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( U ` G ) e. T ) |