| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
| 9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
| 10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
| 11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
| 12 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> F e. T ) |
| 14 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> N e. T ) |
| 15 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( R ` F ) = ( R ` N ) ) |
| 16 |
13 14 15
|
3jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) ) |
| 18 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 19 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> G = ( _I |` B ) ) |
| 20 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> [_ G / g ]_ X = ( _I |` B ) ) |
| 21 |
12 17 18 19 20
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> [_ G / g ]_ X = ( _I |` B ) ) |
| 22 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> K e. HL ) |
| 23 |
|
simpl1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> W e. H ) |
| 24 |
1 6 7
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
| 25 |
22 23 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> ( _I |` B ) e. T ) |
| 26 |
21 25
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G = ( _I |` B ) ) -> [_ G / g ]_ X e. T ) |
| 27 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> ( K e. HL /\ W e. H ) ) |
| 28 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) ) |
| 29 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> G e. T ) |
| 30 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> G =/= ( _I |` B ) ) |
| 31 |
29 30
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> ( G e. T /\ G =/= ( _I |` B ) ) ) |
| 32 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> N e. T ) |
| 33 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) |
| 34 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ G / g ]_ X e. T ) |
| 35 |
27 28 31 32 33 34
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ G =/= ( _I |` B ) ) -> [_ G / g ]_ X e. T ) |
| 36 |
26 35
|
pm2.61dane |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ G e. T /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> [_ G / g ]_ X e. T ) |