Metamath Proof Explorer


Theorem cdlemk35s-id

Description: Substitution version of cdlemk35 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk35s-id ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐹𝑇 )
14 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝑁𝑇 )
15 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
16 13 14 15 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) )
17 16 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) )
18 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
19 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → 𝐺 = ( I ↾ 𝐵 ) )
20 1 2 3 4 5 6 7 8 9 10 11 cdlemkid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋 = ( I ↾ 𝐵 ) )
21 12 17 18 19 20 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → 𝐺 / 𝑔 𝑋 = ( I ↾ 𝐵 ) )
22 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → 𝐾 ∈ HL )
23 simpl1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → 𝑊𝐻 )
24 1 6 7 idltrn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
25 22 23 24 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
26 21 25 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) → 𝐺 / 𝑔 𝑋𝑇 )
27 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) )
29 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → 𝐺𝑇 )
30 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) )
31 29 30 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) )
32 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → 𝑁𝑇 )
33 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) )
34 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )
35 27 28 31 32 33 34 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) → 𝐺 / 𝑔 𝑋𝑇 )
36 26 35 pm2.61dane ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ 𝐺𝑇𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )