Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
11 |
|
cdlemk5.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
12 |
7
|
fvexi |
⊢ 𝑇 ∈ V |
13 |
|
nfv |
⊢ Ⅎ 𝑏 ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) |
14 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐺 |
15 |
|
nfra1 |
⊢ Ⅎ 𝑏 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑇 |
17 |
15 16
|
nfriota |
⊢ Ⅎ 𝑏 ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
18 |
11 17
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑋 |
19 |
14 18
|
nfcsbw |
⊢ Ⅎ 𝑏 ⦋ 𝐺 / 𝑔 ⦌ 𝑋 |
20 |
19
|
nfeq1 |
⊢ Ⅎ 𝑏 ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) |
21 |
20
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → Ⅎ 𝑏 ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkid4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) ) |
23 |
|
eqeq1 |
⊢ ( ( I ↾ 𝐵 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑋 → ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ↔ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ ( I ↾ 𝐵 ) = ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ) → ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ↔ ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) ) ) |
25 |
|
eqidd |
⊢ ( ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) |
26 |
25
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( ( 𝑏 ∈ 𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) ) |
27 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkid5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 ∈ 𝑇 ) |
28 |
1 6 7 8
|
cdlemftr2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ∃ 𝑏 ∈ 𝑇 ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ∃ 𝑏 ∈ 𝑇 ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
30 |
13 21 22 24 26 27 29
|
riotasv3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) ∧ 𝑇 ∈ V ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) ) |
31 |
12 30
|
mpan2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ⦋ 𝐺 / 𝑔 ⦌ 𝑋 = ( I ↾ 𝐵 ) ) |