Metamath Proof Explorer


Theorem riotasv3d

Description: A property ch holding for a representative of a single-valued class expression C ( y ) (see e.g. reusv2 ) also holds for its description binder D (in the form of property th ). (Contributed by NM, 5-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotasv3d.1 𝑦 𝜑
riotasv3d.2 ( 𝜑 → Ⅎ 𝑦 𝜃 )
riotasv3d.3 ( 𝜑𝐷 = ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) ) )
riotasv3d.4 ( ( 𝜑𝐶 = 𝐷 ) → ( 𝜒𝜃 ) )
riotasv3d.5 ( 𝜑 → ( ( 𝑦𝐵𝜓 ) → 𝜒 ) )
riotasv3d.6 ( 𝜑𝐷𝐴 )
riotasv3d.7 ( 𝜑 → ∃ 𝑦𝐵 𝜓 )
Assertion riotasv3d ( ( 𝜑𝐴𝑉 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 riotasv3d.1 𝑦 𝜑
2 riotasv3d.2 ( 𝜑 → Ⅎ 𝑦 𝜃 )
3 riotasv3d.3 ( 𝜑𝐷 = ( 𝑥𝐴𝑦𝐵 ( 𝜓𝑥 = 𝐶 ) ) )
4 riotasv3d.4 ( ( 𝜑𝐶 = 𝐷 ) → ( 𝜒𝜃 ) )
5 riotasv3d.5 ( 𝜑 → ( ( 𝑦𝐵𝜓 ) → 𝜒 ) )
6 riotasv3d.6 ( 𝜑𝐷𝐴 )
7 riotasv3d.7 ( 𝜑 → ∃ 𝑦𝐵 𝜓 )
8 elex ( 𝐴𝑉𝐴 ∈ V )
9 7 adantr ( ( 𝜑𝐴 ∈ V ) → ∃ 𝑦𝐵 𝜓 )
10 nfv 𝑦 𝐴 ∈ V
11 5 imp ( ( 𝜑 ∧ ( 𝑦𝐵𝜓 ) ) → 𝜒 )
12 11 adantrl ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦𝐵𝜓 ) ) ) → 𝜒 )
13 3 6 riotasvd ( ( 𝜑𝐴 ∈ V ) → ( ( 𝑦𝐵𝜓 ) → 𝐷 = 𝐶 ) )
14 13 impr ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦𝐵𝜓 ) ) ) → 𝐷 = 𝐶 )
15 14 eqcomd ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦𝐵𝜓 ) ) ) → 𝐶 = 𝐷 )
16 15 4 syldan ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦𝐵𝜓 ) ) ) → ( 𝜒𝜃 ) )
17 12 16 mpbid ( ( 𝜑 ∧ ( 𝐴 ∈ V ∧ ( 𝑦𝐵𝜓 ) ) ) → 𝜃 )
18 17 exp45 ( 𝜑 → ( 𝐴 ∈ V → ( 𝑦𝐵 → ( 𝜓𝜃 ) ) ) )
19 1 10 18 ralrimd ( 𝜑 → ( 𝐴 ∈ V → ∀ 𝑦𝐵 ( 𝜓𝜃 ) ) )
20 r19.23t ( Ⅎ 𝑦 𝜃 → ( ∀ 𝑦𝐵 ( 𝜓𝜃 ) ↔ ( ∃ 𝑦𝐵 𝜓𝜃 ) ) )
21 2 20 syl ( 𝜑 → ( ∀ 𝑦𝐵 ( 𝜓𝜃 ) ↔ ( ∃ 𝑦𝐵 𝜓𝜃 ) ) )
22 19 21 sylibd ( 𝜑 → ( 𝐴 ∈ V → ( ∃ 𝑦𝐵 𝜓𝜃 ) ) )
23 22 imp ( ( 𝜑𝐴 ∈ V ) → ( ∃ 𝑦𝐵 𝜓𝜃 ) )
24 9 23 mpd ( ( 𝜑𝐴 ∈ V ) → 𝜃 )
25 8 24 sylan2 ( ( 𝜑𝐴𝑉 ) → 𝜃 )