Metamath Proof Explorer


Theorem cdlemkid5

Description: Lemma for cdlemkid . (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemkid5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 1 2 3 4 5 6 7 8 9 10 11 cdlemkid4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) )
13 1 6 7 idltrn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
14 13 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝐵 ) ∈ 𝑇 )
15 eqidd ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) )
16 15 rgenw 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) )
17 eqeq1 ( 𝑧 = ( I ↾ 𝐵 ) → ( 𝑧 = ( I ↾ 𝐵 ) ↔ ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) )
18 17 imbi2d ( 𝑧 = ( I ↾ 𝐵 ) → ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) ) )
19 18 ralbidv ( 𝑧 = ( I ↾ 𝐵 ) → ( ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ↔ ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) ) )
20 19 rspcev ( ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) ) → ∃ 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) )
21 14 16 20 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ∃ 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) )
22 1 6 7 8 cdlemftr2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ∃ 𝑏𝑇 ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) )
23 22 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ∃ 𝑏𝑇 ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) )
24 reusv1 ( ∃ 𝑏𝑇 ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( ∃! 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ↔ ∃ 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) )
25 23 24 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( ∃! 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ↔ ∃ 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) )
26 21 25 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ∃! 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) )
27 riotacl ( ∃! 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) ∈ 𝑇 )
28 26 27 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( I ↾ 𝐵 ) ) ) ∈ 𝑇 )
29 12 28 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑁𝑇 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝐺 = ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )