Metamath Proof Explorer


Theorem cdlemkid5

Description: Lemma for cdlemkid . (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemkid5 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X T

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 1 2 3 4 5 6 7 8 9 10 11 cdlemkid4 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X = ι z T | b T b I B R b R F R b R G z = I B
13 1 6 7 idltrn K HL W H I B T
14 13 3ad2ant1 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B I B T
15 eqidd b I B R b R F R b R G I B = I B
16 15 rgenw b T b I B R b R F R b R G I B = I B
17 eqeq1 z = I B z = I B I B = I B
18 17 imbi2d z = I B b I B R b R F R b R G z = I B b I B R b R F R b R G I B = I B
19 18 ralbidv z = I B b T b I B R b R F R b R G z = I B b T b I B R b R F R b R G I B = I B
20 19 rspcev I B T b T b I B R b R F R b R G I B = I B z T b T b I B R b R F R b R G z = I B
21 14 16 20 sylancl K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B z T b T b I B R b R F R b R G z = I B
22 1 6 7 8 cdlemftr2 K HL W H b T b I B R b R F R b R G
23 22 3ad2ant1 K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B b T b I B R b R F R b R G
24 reusv1 b T b I B R b R F R b R G ∃! z T b T b I B R b R F R b R G z = I B z T b T b I B R b R F R b R G z = I B
25 23 24 syl K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B ∃! z T b T b I B R b R F R b R G z = I B z T b T b I B R b R F R b R G z = I B
26 21 25 mpbird K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B ∃! z T b T b I B R b R F R b R G z = I B
27 riotacl ∃! z T b T b I B R b R F R b R G z = I B ι z T | b T b I B R b R F R b R G z = I B T
28 26 27 syl K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B ι z T | b T b I B R b R F R b R G z = I B T
29 12 28 eqeltrd K HL W H F T N T R F = R N P A ¬ P ˙ W G = I B G / g X T