Description: Lemma for cdlemkid . (Contributed by NM, 25-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
Assertion | cdlemkid4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | simp3r | |
|
13 | 1 6 7 | idltrn | |
14 | 13 | 3ad2ant1 | |
15 | 12 14 | eqeltrd | |
16 | 11 | csbeq2i | |
17 | csbriota | |
|
18 | 16 17 | eqtri | |
19 | 18 | a1i | |
20 | sbcralg | |
|
21 | sbcimg | |
|
22 | sbc3an | |
|
23 | sbcg | |
|
24 | sbcg | |
|
25 | sbcne12 | |
|
26 | csbconstg | |
|
27 | csbfv | |
|
28 | 27 | a1i | |
29 | 26 28 | neeq12d | |
30 | 25 29 | bitrid | |
31 | 23 24 30 | 3anbi123d | |
32 | 22 31 | bitrid | |
33 | sbceq2g | |
|
34 | 32 33 | imbi12d | |
35 | 21 34 | bitrd | |
36 | 35 | ralbidv | |
37 | 20 36 | bitrd | |
38 | 37 | riotabidv | |
39 | 19 38 | eqtrd | |
40 | 15 39 | syl | |
41 | simpl1 | |
|
42 | simpl2 | |
|
43 | simpl3l | |
|
44 | simpl3r | |
|
45 | simprlr | |
|
46 | simprr1 | |
|
47 | 45 46 | jca | |
48 | 1 2 3 4 5 6 7 8 9 10 | cdlemkid2 | |
49 | 41 42 43 44 47 48 | syl113anc | |
50 | 49 | eqeq2d | |
51 | simprll | |
|
52 | 1 2 5 6 7 | ltrnideq | |
53 | 41 51 43 52 | syl3anc | |
54 | 50 53 | bitr4d | |
55 | 54 | exp44 | |
56 | 55 | imp41 | |
57 | 56 | pm5.74da | |
58 | 57 | ralbidva | |
59 | 58 | riotabidva | |
60 | 40 59 | eqtrd | |