Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp3r |
|
13 |
1 6 7
|
idltrn |
|
14 |
13
|
3ad2ant1 |
|
15 |
12 14
|
eqeltrd |
|
16 |
11
|
csbeq2i |
|
17 |
|
csbriota |
|
18 |
16 17
|
eqtri |
|
19 |
18
|
a1i |
|
20 |
|
sbcralg |
|
21 |
|
sbcimg |
|
22 |
|
sbc3an |
|
23 |
|
sbcg |
|
24 |
|
sbcg |
|
25 |
|
sbcne12 |
|
26 |
|
csbconstg |
|
27 |
|
csbfv |
|
28 |
27
|
a1i |
|
29 |
26 28
|
neeq12d |
|
30 |
25 29
|
syl5bb |
|
31 |
23 24 30
|
3anbi123d |
|
32 |
22 31
|
syl5bb |
|
33 |
|
sbceq2g |
|
34 |
32 33
|
imbi12d |
|
35 |
21 34
|
bitrd |
|
36 |
35
|
ralbidv |
|
37 |
20 36
|
bitrd |
|
38 |
37
|
riotabidv |
|
39 |
19 38
|
eqtrd |
|
40 |
15 39
|
syl |
|
41 |
|
simpl1 |
|
42 |
|
simpl2 |
|
43 |
|
simpl3l |
|
44 |
|
simpl3r |
|
45 |
|
simprlr |
|
46 |
|
simprr1 |
|
47 |
45 46
|
jca |
|
48 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkid2 |
|
49 |
41 42 43 44 47 48
|
syl113anc |
|
50 |
49
|
eqeq2d |
|
51 |
|
simprll |
|
52 |
1 2 5 6 7
|
ltrnideq |
|
53 |
41 51 43 52
|
syl3anc |
|
54 |
50 53
|
bitr4d |
|
55 |
54
|
exp44 |
|
56 |
55
|
imp41 |
|
57 |
56
|
pm5.74da |
|
58 |
57
|
ralbidva |
|
59 |
58
|
riotabidva |
|
60 |
40 59
|
eqtrd |
|