| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
cdlemk5.x |
|
| 12 |
|
simp3r |
|
| 13 |
1 6 7
|
idltrn |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
12 14
|
eqeltrd |
|
| 16 |
11
|
csbeq2i |
|
| 17 |
|
csbriota |
|
| 18 |
16 17
|
eqtri |
|
| 19 |
18
|
a1i |
|
| 20 |
|
sbcralg |
|
| 21 |
|
sbcimg |
|
| 22 |
|
sbc3an |
|
| 23 |
|
sbcg |
|
| 24 |
|
sbcg |
|
| 25 |
|
sbcne12 |
|
| 26 |
|
csbconstg |
|
| 27 |
|
csbfv |
|
| 28 |
27
|
a1i |
|
| 29 |
26 28
|
neeq12d |
|
| 30 |
25 29
|
bitrid |
|
| 31 |
23 24 30
|
3anbi123d |
|
| 32 |
22 31
|
bitrid |
|
| 33 |
|
sbceq2g |
|
| 34 |
32 33
|
imbi12d |
|
| 35 |
21 34
|
bitrd |
|
| 36 |
35
|
ralbidv |
|
| 37 |
20 36
|
bitrd |
|
| 38 |
37
|
riotabidv |
|
| 39 |
19 38
|
eqtrd |
|
| 40 |
15 39
|
syl |
|
| 41 |
|
simpl1 |
|
| 42 |
|
simpl2 |
|
| 43 |
|
simpl3l |
|
| 44 |
|
simpl3r |
|
| 45 |
|
simprlr |
|
| 46 |
|
simprr1 |
|
| 47 |
45 46
|
jca |
|
| 48 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkid2 |
|
| 49 |
41 42 43 44 47 48
|
syl113anc |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
|
simprll |
|
| 52 |
1 2 5 6 7
|
ltrnideq |
|
| 53 |
41 51 43 52
|
syl3anc |
|
| 54 |
50 53
|
bitr4d |
|
| 55 |
54
|
exp44 |
|
| 56 |
55
|
imp41 |
|
| 57 |
56
|
pm5.74da |
|
| 58 |
57
|
ralbidva |
|
| 59 |
58
|
riotabidva |
|
| 60 |
40 59
|
eqtrd |
|