Metamath Proof Explorer


Theorem ltrnideq

Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012)

Ref Expression
Hypotheses ltrnnidn.b B = Base K
ltrnnidn.l ˙ = K
ltrnnidn.a A = Atoms K
ltrnnidn.h H = LHyp K
ltrnnidn.t T = LTrn K W
Assertion ltrnideq K HL W H F T P A ¬ P ˙ W F = I B F P = P

Proof

Step Hyp Ref Expression
1 ltrnnidn.b B = Base K
2 ltrnnidn.l ˙ = K
3 ltrnnidn.a A = Atoms K
4 ltrnnidn.h H = LHyp K
5 ltrnnidn.t T = LTrn K W
6 simpr K HL W H F T P A ¬ P ˙ W F = I B F = I B
7 6 fveq1d K HL W H F T P A ¬ P ˙ W F = I B F P = I B P
8 simpl3l K HL W H F T P A ¬ P ˙ W F = I B P A
9 1 3 atbase P A P B
10 fvresi P B I B P = P
11 8 9 10 3syl K HL W H F T P A ¬ P ˙ W F = I B I B P = P
12 7 11 eqtrd K HL W H F T P A ¬ P ˙ W F = I B F P = P
13 12 ex K HL W H F T P A ¬ P ˙ W F = I B F P = P
14 simpl1 K HL W H F T P A ¬ P ˙ W F I B K HL W H
15 simpl2 K HL W H F T P A ¬ P ˙ W F I B F T
16 simpr K HL W H F T P A ¬ P ˙ W F I B F I B
17 simpl3 K HL W H F T P A ¬ P ˙ W F I B P A ¬ P ˙ W
18 1 2 3 4 5 ltrnnidn K HL W H F T F I B P A ¬ P ˙ W F P P
19 14 15 16 17 18 syl121anc K HL W H F T P A ¬ P ˙ W F I B F P P
20 19 ex K HL W H F T P A ¬ P ˙ W F I B F P P
21 20 necon4d K HL W H F T P A ¬ P ˙ W F P = P F = I B
22 13 21 impbid K HL W H F T P A ¬ P ˙ W F = I B F P = P