Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
12 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> G = ( _I |` B ) ) |
13 |
1 6 7
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( _I |` B ) e. T ) |
15 |
12 14
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> G e. T ) |
16 |
11
|
csbeq2i |
|- [_ G / g ]_ X = [_ G / g ]_ ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
17 |
|
csbriota |
|- [_ G / g ]_ ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) = ( iota_ z e. T [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
18 |
16 17
|
eqtri |
|- [_ G / g ]_ X = ( iota_ z e. T [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
19 |
18
|
a1i |
|- ( G e. T -> [_ G / g ]_ X = ( iota_ z e. T [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) ) |
20 |
|
sbcralg |
|- ( G e. T -> ( [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) <-> A. b e. T [. G / g ]. ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) ) |
21 |
|
sbcimg |
|- ( G e. T -> ( [. G / g ]. ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) <-> ( [. G / g ]. ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> [. G / g ]. ( z ` P ) = Y ) ) ) |
22 |
|
sbc3an |
|- ( [. G / g ]. ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) <-> ( [. G / g ]. b =/= ( _I |` B ) /\ [. G / g ]. ( R ` b ) =/= ( R ` F ) /\ [. G / g ]. ( R ` b ) =/= ( R ` g ) ) ) |
23 |
|
sbcg |
|- ( G e. T -> ( [. G / g ]. b =/= ( _I |` B ) <-> b =/= ( _I |` B ) ) ) |
24 |
|
sbcg |
|- ( G e. T -> ( [. G / g ]. ( R ` b ) =/= ( R ` F ) <-> ( R ` b ) =/= ( R ` F ) ) ) |
25 |
|
sbcne12 |
|- ( [. G / g ]. ( R ` b ) =/= ( R ` g ) <-> [_ G / g ]_ ( R ` b ) =/= [_ G / g ]_ ( R ` g ) ) |
26 |
|
csbconstg |
|- ( G e. T -> [_ G / g ]_ ( R ` b ) = ( R ` b ) ) |
27 |
|
csbfv |
|- [_ G / g ]_ ( R ` g ) = ( R ` G ) |
28 |
27
|
a1i |
|- ( G e. T -> [_ G / g ]_ ( R ` g ) = ( R ` G ) ) |
29 |
26 28
|
neeq12d |
|- ( G e. T -> ( [_ G / g ]_ ( R ` b ) =/= [_ G / g ]_ ( R ` g ) <-> ( R ` b ) =/= ( R ` G ) ) ) |
30 |
25 29
|
syl5bb |
|- ( G e. T -> ( [. G / g ]. ( R ` b ) =/= ( R ` g ) <-> ( R ` b ) =/= ( R ` G ) ) ) |
31 |
23 24 30
|
3anbi123d |
|- ( G e. T -> ( ( [. G / g ]. b =/= ( _I |` B ) /\ [. G / g ]. ( R ` b ) =/= ( R ` F ) /\ [. G / g ]. ( R ` b ) =/= ( R ` g ) ) <-> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) |
32 |
22 31
|
syl5bb |
|- ( G e. T -> ( [. G / g ]. ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) <-> ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) |
33 |
|
sbceq2g |
|- ( G e. T -> ( [. G / g ]. ( z ` P ) = Y <-> ( z ` P ) = [_ G / g ]_ Y ) ) |
34 |
32 33
|
imbi12d |
|- ( G e. T -> ( ( [. G / g ]. ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> [. G / g ]. ( z ` P ) = Y ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
35 |
21 34
|
bitrd |
|- ( G e. T -> ( [. G / g ]. ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
36 |
35
|
ralbidv |
|- ( G e. T -> ( A. b e. T [. G / g ]. ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
37 |
20 36
|
bitrd |
|- ( G e. T -> ( [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
38 |
37
|
riotabidv |
|- ( G e. T -> ( iota_ z e. T [. G / g ]. A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
39 |
19 38
|
eqtrd |
|- ( G e. T -> [_ G / g ]_ X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
40 |
15 39
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> [_ G / g ]_ X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) ) |
41 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
42 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) ) |
43 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
44 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> G = ( _I |` B ) ) |
45 |
|
simprlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> b e. T ) |
46 |
|
simprr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> b =/= ( _I |` B ) ) |
47 |
45 46
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( b e. T /\ b =/= ( _I |` B ) ) ) |
48 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) /\ ( b e. T /\ b =/= ( _I |` B ) ) ) ) -> [_ G / g ]_ Y = P ) |
49 |
41 42 43 44 47 48
|
syl113anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> [_ G / g ]_ Y = P ) |
50 |
49
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( z ` P ) = [_ G / g ]_ Y <-> ( z ` P ) = P ) ) |
51 |
|
simprll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> z e. T ) |
52 |
1 2 5 6 7
|
ltrnideq |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( z = ( _I |` B ) <-> ( z ` P ) = P ) ) |
53 |
41 51 43 52
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( z = ( _I |` B ) <-> ( z ` P ) = P ) ) |
54 |
50 53
|
bitr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ ( ( z e. T /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( z ` P ) = [_ G / g ]_ Y <-> z = ( _I |` B ) ) ) |
55 |
54
|
exp44 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( z e. T -> ( b e. T -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( ( z ` P ) = [_ G / g ]_ Y <-> z = ( _I |` B ) ) ) ) ) ) |
56 |
55
|
imp41 |
|- ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ z e. T ) /\ b e. T ) /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) -> ( ( z ` P ) = [_ G / g ]_ Y <-> z = ( _I |` B ) ) ) |
57 |
56
|
pm5.74da |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ z e. T ) /\ b e. T ) -> ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
58 |
57
|
ralbidva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) /\ z e. T ) -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
59 |
58
|
riotabidva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = [_ G / g ]_ Y ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
60 |
40 59
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> [_ G / g ]_ X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |