| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemk5.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemk5.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemk5.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemk5.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemk5.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemk5.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 8 |
|
cdlemk5.r |
|- R = ( ( trL ` K ) ` W ) |
| 9 |
|
cdlemk5.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
| 10 |
|
cdlemk5.y |
|- Y = ( ( P .\/ ( R ` g ) ) ./\ ( Z .\/ ( R ` ( g o. `' b ) ) ) ) |
| 11 |
|
cdlemk5.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` g ) ) -> ( z ` P ) = Y ) ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkid4 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> [_ G / g ]_ X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
| 13 |
1 6 7
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( _I |` B ) e. T ) |
| 15 |
|
eqidd |
|- ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( _I |` B ) = ( _I |` B ) ) |
| 16 |
15
|
rgenw |
|- A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( _I |` B ) = ( _I |` B ) ) |
| 17 |
|
eqeq1 |
|- ( z = ( _I |` B ) -> ( z = ( _I |` B ) <-> ( _I |` B ) = ( _I |` B ) ) ) |
| 18 |
17
|
imbi2d |
|- ( z = ( _I |` B ) -> ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( _I |` B ) = ( _I |` B ) ) ) ) |
| 19 |
18
|
ralbidv |
|- ( z = ( _I |` B ) -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( _I |` B ) = ( _I |` B ) ) ) ) |
| 20 |
19
|
rspcev |
|- ( ( ( _I |` B ) e. T /\ A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( _I |` B ) = ( _I |` B ) ) ) -> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) |
| 21 |
14 16 20
|
sylancl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) |
| 22 |
1 6 7 8
|
cdlemftr2 |
|- ( ( K e. HL /\ W e. H ) -> E. b e. T ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) |
| 23 |
22
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> E. b e. T ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) |
| 24 |
|
reusv1 |
|- ( E. b e. T ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) <-> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
| 25 |
23 24
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) <-> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) ) |
| 26 |
21 25
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) |
| 27 |
|
riotacl |
|- ( E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) e. T ) |
| 28 |
26 27
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( _I |` B ) ) ) e. T ) |
| 29 |
12 28
|
eqeltrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T /\ ( R ` F ) = ( R ` N ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ G = ( _I |` B ) ) ) -> [_ G / g ]_ X e. T ) |