Metamath Proof Explorer


Theorem sbc3an

Description: Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006) (Revised by NM, 17-Aug-2018)

Ref Expression
Assertion sbc3an [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ

Proof

Step Hyp Ref Expression
1 df-3an φψχφψχ
2 1 sbcbii [˙A/x]˙φψχ[˙A/x]˙φψχ
3 sbcan [˙A/x]˙φψχ[˙A/x]˙φψ[˙A/x]˙χ
4 sbcan [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
5 4 anbi1i [˙A/x]˙φψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
6 2 3 5 3bitri [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
7 df-3an [˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
8 6 7 bitr4i [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ