| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) |
| 2 |
1
|
nfmov |
⊢ Ⅎ 𝑦 ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) |
| 3 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 4 |
3
|
com3l |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) ) ) |
| 5 |
4
|
alrimdv |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) ) ) |
| 6 |
|
mo2icl |
⊢ ( ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → 𝑥 = 𝐶 ) → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
| 7 |
5 6
|
syl6 |
⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 8 |
2 7
|
rexlimi |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
| 9 |
|
mormo |
⊢ ( ∃* 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
| 10 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ∧ ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 11 |
10
|
rbaib |
⊢ ( ∃* 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
| 12 |
8 9 11
|
3syl |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |