Metamath Proof Explorer
Description: Restricted quantifier version of exlimi . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)
|
|
Ref |
Expression |
|
Hypotheses |
rexlimi.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
rexlimi.2 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
rexlimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexlimi.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
rexlimi.2 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
3 |
2
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) |
4 |
1
|
r19.23 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
5 |
3 4
|
mpbi |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |