Metamath Proof Explorer


Theorem rexlimi

Description: Restricted quantifier version of exlimi . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses rexlimi.1 𝑥 𝜓
rexlimi.2 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion rexlimi ( ∃ 𝑥𝐴 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 rexlimi.1 𝑥 𝜓
2 rexlimi.2 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
3 2 rgen 𝑥𝐴 ( 𝜑𝜓 )
4 1 r19.23 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )
5 3 4 mpbi ( ∃ 𝑥𝐴 𝜑𝜓 )