Metamath Proof Explorer


Theorem rexlimi

Description: Restricted quantifier version of exlimi . For a version based on fewer axioms see rexlimiv . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses rexlimi.1 xψ
rexlimi.2 xAφψ
Assertion rexlimi xAφψ

Proof

Step Hyp Ref Expression
1 rexlimi.1 xψ
2 rexlimi.2 xAφψ
3 2 rgen xAφψ
4 1 r19.23 xAφψxAφψ
5 3 4 mpbi xAφψ