Metamath Proof Explorer


Theorem rexlimi

Description: Restricted quantifier version of exlimi . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses rexlimi.1
|- F/ x ps
rexlimi.2
|- ( x e. A -> ( ph -> ps ) )
Assertion rexlimi
|- ( E. x e. A ph -> ps )

Proof

Step Hyp Ref Expression
1 rexlimi.1
 |-  F/ x ps
2 rexlimi.2
 |-  ( x e. A -> ( ph -> ps ) )
3 2 rgen
 |-  A. x e. A ( ph -> ps )
4 1 r19.23
 |-  ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) )
5 3 4 mpbi
 |-  ( E. x e. A ph -> ps )