Description: Restricted quantifier version of exlimi . (Contributed by NM, 30-Nov-2003) (Proof shortened by Andrew Salmon, 30-May-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexlimi.1 | |- F/ x ps |
|
rexlimi.2 | |- ( x e. A -> ( ph -> ps ) ) |
||
Assertion | rexlimi | |- ( E. x e. A ph -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimi.1 | |- F/ x ps |
|
2 | rexlimi.2 | |- ( x e. A -> ( ph -> ps ) ) |
|
3 | 2 | rgen | |- A. x e. A ( ph -> ps ) |
4 | 1 | r19.23 | |- ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) |
5 | 3 4 | mpbi | |- ( E. x e. A ph -> ps ) |