| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  𝐴  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝐴 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							albidv | 
							⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							imbi1d | 
							⊢ ( 𝑦  =  𝐴  →  ( ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃* 𝑥 𝜑 )  ↔  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							equequ2 | 
							⊢ ( 𝑦  =  𝑧  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑧 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  𝑧  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝑧 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							albidv | 
							⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							19.8aw | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-mo | 
							⊢ ( ∃* 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylibr | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃* 𝑥 𝜑 )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							vtoclg | 
							⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqvisset | 
							⊢ ( 𝑥  =  𝐴  →  𝐴  ∈  V )  | 
						
						
							| 13 | 
							
								12
							 | 
							imim2i | 
							⊢ ( ( 𝜑  →  𝑥  =  𝐴 )  →  ( 𝜑  →  𝐴  ∈  V ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							con3rr3 | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ( 𝜑  →  𝑥  =  𝐴 )  →  ¬  𝜑 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							alimdv | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∀ 𝑥 ¬  𝜑 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							alnex | 
							⊢ ( ∀ 𝑥 ¬  𝜑  ↔  ¬  ∃ 𝑥 𝜑 )  | 
						
						
							| 17 | 
							
								
							 | 
							nexmo | 
							⊢ ( ¬  ∃ 𝑥 𝜑  →  ∃* 𝑥 𝜑 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylbi | 
							⊢ ( ∀ 𝑥 ¬  𝜑  →  ∃* 𝑥 𝜑 )  | 
						
						
							| 19 | 
							
								15 18
							 | 
							syl6 | 
							⊢ ( ¬  𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) )  | 
						
						
							| 20 | 
							
								11 19
							 | 
							pm2.61i | 
							⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 )  |