| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 2 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 | 
						
							| 3 | 2 | nfmov | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 | 
						
							| 4 |  | rsp | ⊢ ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ( 𝑦  ∈  𝐴  →  𝑥  =  𝐵 ) ) | 
						
							| 5 | 4 | com12 | ⊢ ( 𝑦  ∈  𝐴  →  ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  𝑥  =  𝐵 ) ) | 
						
							| 6 | 5 | alrimiv | ⊢ ( 𝑦  ∈  𝐴  →  ∀ 𝑥 ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  𝑥  =  𝐵 ) ) | 
						
							| 7 |  | mo2icl | ⊢ ( ∀ 𝑥 ( ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  𝑥  =  𝐵 )  →  ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑦  ∈  𝐴  →  ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 9 | 3 8 | exlimi | ⊢ ( ∃ 𝑦 𝑦  ∈  𝐴  →  ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 10 | 1 9 | sylbi | ⊢ ( 𝐴  ≠  ∅  →  ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) | 
						
							| 11 |  | df-eu | ⊢ ( ∃! 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ( ∃ 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  ∧  ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 12 | 11 | rbaib | ⊢ ( ∃* 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  →  ( ∃! 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ∃ 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝐴  ≠  ∅  →  ( ∃! 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵  ↔  ∃ 𝑥 ∀ 𝑦  ∈  𝐴 𝑥  =  𝐵 ) ) |