Metamath Proof Explorer


Theorem reusv2lem1

Description: Lemma for reusv2 . (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reusv2lem1 A∃!xyAx=BxyAx=B

Proof

Step Hyp Ref Expression
1 n0 AyyA
2 nfra1 yyAx=B
3 2 nfmov y*xyAx=B
4 rsp yAx=ByAx=B
5 4 com12 yAyAx=Bx=B
6 5 alrimiv yAxyAx=Bx=B
7 mo2icl xyAx=Bx=B*xyAx=B
8 6 7 syl yA*xyAx=B
9 3 8 exlimi yyA*xyAx=B
10 1 9 sylbi A*xyAx=B
11 df-eu ∃!xyAx=BxyAx=B*xyAx=B
12 11 rbaib *xyAx=B∃!xyAx=BxyAx=B
13 10 12 syl A∃!xyAx=BxyAx=B