Description: Lemma for reusv2 . (Contributed by NM, 27-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | reusv2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eunex | |
|
2 | exnal | |
|
3 | 1 2 | sylib | |
4 | rzal | |
|
5 | 4 | alrimiv | |
6 | 3 5 | nsyl3 | |
7 | 6 | pm2.21d | |
8 | simpr | |
|
9 | nfra1 | |
|
10 | nfra1 | |
|
11 | simpr | |
|
12 | rspa | |
|
13 | 12 | adantr | |
14 | 11 13 | eqtr4d | |
15 | eqeq1 | |
|
16 | 15 | ralbidv | |
17 | 16 | biimprcd | |
18 | 17 | ad2antrr | |
19 | 14 18 | mpd | |
20 | 19 | exp31 | |
21 | 9 10 20 | rexlimd | |
22 | 21 | adantl | |
23 | r19.2z | |
|
24 | 23 | ex | |
25 | 24 | adantr | |
26 | 22 25 | impbid | |
27 | 26 | eubidv | |
28 | 27 | ex | |
29 | 28 | exlimdv | |
30 | euex | |
|
31 | 16 | cbvexvw | |
32 | 30 31 | sylib | |
33 | 29 32 | impel | |
34 | 8 33 | mpbird | |
35 | 34 | ex | |
36 | 7 35 | pm2.61ine | |