Metamath Proof Explorer


Theorem reusv2lem2

Description: Lemma for reusv2 . (Contributed by NM, 27-Oct-2010) (Proof shortened by Mario Carneiro, 19-Nov-2016) (Proof shortened by JJ, 7-Aug-2021)

Ref Expression
Assertion reusv2lem2 ∃!xyAx=B∃!xyAx=B

Proof

Step Hyp Ref Expression
1 eunex ∃!xyAx=Bx¬yAx=B
2 exnal x¬yAx=B¬xyAx=B
3 1 2 sylib ∃!xyAx=B¬xyAx=B
4 rzal A=yAx=B
5 4 alrimiv A=xyAx=B
6 3 5 nsyl3 A=¬∃!xyAx=B
7 6 pm2.21d A=∃!xyAx=B∃!xyAx=B
8 simpr A∃!xyAx=B∃!xyAx=B
9 nfra1 yyAz=B
10 nfra1 yyAx=B
11 simpr yAz=ByAx=Bx=B
12 rspa yAz=ByAz=B
13 12 adantr yAz=ByAx=Bz=B
14 11 13 eqtr4d yAz=ByAx=Bx=z
15 eqeq1 x=zx=Bz=B
16 15 ralbidv x=zyAx=ByAz=B
17 16 biimprcd yAz=Bx=zyAx=B
18 17 ad2antrr yAz=ByAx=Bx=zyAx=B
19 14 18 mpd yAz=ByAx=ByAx=B
20 19 exp31 yAz=ByAx=ByAx=B
21 9 10 20 rexlimd yAz=ByAx=ByAx=B
22 21 adantl AyAz=ByAx=ByAx=B
23 r19.2z AyAx=ByAx=B
24 23 ex AyAx=ByAx=B
25 24 adantr AyAz=ByAx=ByAx=B
26 22 25 impbid AyAz=ByAx=ByAx=B
27 26 eubidv AyAz=B∃!xyAx=B∃!xyAx=B
28 27 ex AyAz=B∃!xyAx=B∃!xyAx=B
29 28 exlimdv AzyAz=B∃!xyAx=B∃!xyAx=B
30 euex ∃!xyAx=BxyAx=B
31 16 cbvexvw xyAx=BzyAz=B
32 30 31 sylib ∃!xyAx=BzyAz=B
33 29 32 impel A∃!xyAx=B∃!xyAx=B∃!xyAx=B
34 8 33 mpbird A∃!xyAx=B∃!xyAx=B
35 34 ex A∃!xyAx=B∃!xyAx=B
36 7 35 pm2.61ine ∃!xyAx=B∃!xyAx=B