Metamath Proof Explorer


Theorem eunex

Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010) (Proof shortened by BJ, 2-Jan-2023)

Ref Expression
Assertion eunex ∃!xφx¬φ

Proof

Step Hyp Ref Expression
1 dtruALT2 ¬xx=y
2 albi xφx=yxφxx=y
3 1 2 mtbiri xφx=y¬xφ
4 3 exlimiv yxφx=y¬xφ
5 eu6 ∃!xφyxφx=y
6 exnal x¬φ¬xφ
7 4 5 6 3imtr4i ∃!xφx¬φ