Metamath Proof Explorer


Theorem eunex

Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010) (Proof shortened by BJ, 2-Jan-2023)

Ref Expression
Assertion eunex ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 dtruALT2 ¬ ∀ 𝑥 𝑥 = 𝑦
2 albi ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝑥 = 𝑦 ) )
3 1 2 mtbiri ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 )
4 3 exlimiv ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 )
5 eu6 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
6 exnal ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
7 4 5 6 3imtr4i ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 )