Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Introduce the Axiom of Power Sets
eunex
Metamath Proof Explorer
Description: Existential uniqueness implies there is a value for which the wff
argument is false. (Contributed by NM , 24-Oct-2010) (Proof shortened by BJ , 2-Jan-2023)
Ref
Expression
Assertion
eunex
⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 )
Proof
Step
Hyp
Ref
Expression
1
dtruALT2
⊢ ¬ ∀ 𝑥 𝑥 = 𝑦
2
albi
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 𝑥 = 𝑦 ) )
3
1 2
mtbiri
⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 )
4
3
exlimiv
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) → ¬ ∀ 𝑥 𝜑 )
5
eu6
⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) )
6
exnal
⊢ ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
7
4 5 6
3imtr4i
⊢ ( ∃! 𝑥 𝜑 → ∃ 𝑥 ¬ 𝜑 )