Metamath Proof Explorer


Theorem cdlemk35

Description: Part of proof of Lemma K of Crawley p. 118. cdlemk29-3 with shorter hypotheses. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk4.l = ( le ‘ 𝐾 )
cdlemk4.j = ( join ‘ 𝐾 )
cdlemk4.m = ( meet ‘ 𝐾 )
cdlemk4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk4.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk4.y 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) )
cdlemk4.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk35 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝑋𝑇 )

Proof

Step Hyp Ref Expression
1 cdlemk4.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk4.l = ( le ‘ 𝐾 )
3 cdlemk4.j = ( join ‘ 𝐾 )
4 cdlemk4.m = ( meet ‘ 𝐾 )
5 cdlemk4.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk4.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk4.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk4.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk4.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk4.y 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) )
11 cdlemk4.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 eqid ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
13 eqid ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) = ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) )
14 eqid ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) 𝐺 ) ) ) = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) 𝐺 ) ) )
15 1 2 3 4 5 6 7 8 12 13 14 cdlemk34 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) 𝐺 ) ) ) = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) ) )
16 9 oveq1i ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) = ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) )
17 16 oveq2i ( ( 𝑃 ( 𝑅𝐺 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) )
18 10 17 eqtri 𝑌 = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) )
19 18 eqeq2i ( ( 𝑧𝑃 ) = 𝑌 ↔ ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) )
20 19 imbi2i ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) )
21 20 ralbii ( ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) ↔ ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) )
22 21 a1i ( 𝑧𝑇 → ( ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) ↔ ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) ) )
23 22 riotabiia ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = 𝑌 ) ) = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) )
24 11 23 eqtri 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) ) ( 𝑅 ‘ ( 𝐺 𝑏 ) ) ) ) ) )
25 15 24 eqtr4di ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) 𝐺 ) ) ) = 𝑋 )
26 1 2 3 4 5 6 7 8 12 13 14 cdlemk29-3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) ) ‘ 𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) ) 𝐺 ) ) ) ∈ 𝑇 )
27 25 26 eqeltrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝑋𝑇 )