Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk4.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk4.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk4.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk4.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk4.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk4.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk4.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk4.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk4.z |
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) |
10 |
|
cdlemk4.y |
|- Y = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) |
11 |
|
cdlemk4.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) |
12 |
|
eqid |
|- ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
13 |
|
eqid |
|- ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
14 |
|
eqid |
|- ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) G ) ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) G ) ) ) |
15 |
1 2 3 4 5 6 7 8 12 13 14
|
cdlemk34 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) G ) ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) ) |
16 |
9
|
oveq1i |
|- ( Z .\/ ( R ` ( G o. `' b ) ) ) = ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) |
17 |
16
|
oveq2i |
|- ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) |
18 |
10 17
|
eqtri |
|- Y = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) |
19 |
18
|
eqeq2i |
|- ( ( z ` P ) = Y <-> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) |
20 |
19
|
imbi2i |
|- ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) |
21 |
20
|
ralbii |
|- ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) |
22 |
21
|
a1i |
|- ( z e. T -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) ) |
23 |
22
|
riotabiia |
|- ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) |
24 |
11 23
|
eqtri |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) ) .\/ ( R ` ( G o. `' b ) ) ) ) ) ) |
25 |
15 24
|
eqtr4di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) G ) ) ) = X ) |
26 |
1 2 3 4 5 6 7 8 12 13 14
|
cdlemk29-3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) G ) ) ) e. T ) |
27 |
25 26
|
eqeltrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> X e. T ) |