Metamath Proof Explorer


Theorem riotabiia

Description: Equivalent wff's yield equal restricted iotas (inference form). ( rabbiia analog.) (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypothesis riotabiia.1
|- ( x e. A -> ( ph <-> ps ) )
Assertion riotabiia
|- ( iota_ x e. A ph ) = ( iota_ x e. A ps )

Proof

Step Hyp Ref Expression
1 riotabiia.1
 |-  ( x e. A -> ( ph <-> ps ) )
2 eqid
 |-  _V = _V
3 1 adantl
 |-  ( ( _V = _V /\ x e. A ) -> ( ph <-> ps ) )
4 3 riotabidva
 |-  ( _V = _V -> ( iota_ x e. A ph ) = ( iota_ x e. A ps ) )
5 2 4 ax-mp
 |-  ( iota_ x e. A ph ) = ( iota_ x e. A ps )