Metamath Proof Explorer


Theorem cdlemk36

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b
|- B = ( Base ` K )
cdlemk4.l
|- .<_ = ( le ` K )
cdlemk4.j
|- .\/ = ( join ` K )
cdlemk4.m
|- ./\ = ( meet ` K )
cdlemk4.a
|- A = ( Atoms ` K )
cdlemk4.h
|- H = ( LHyp ` K )
cdlemk4.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk4.r
|- R = ( ( trL ` K ) ` W )
cdlemk4.z
|- Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
cdlemk4.y
|- Y = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) )
cdlemk4.x
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) )
Assertion cdlemk36
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( X ` P ) = Y )

Proof

Step Hyp Ref Expression
1 cdlemk4.b
 |-  B = ( Base ` K )
2 cdlemk4.l
 |-  .<_ = ( le ` K )
3 cdlemk4.j
 |-  .\/ = ( join ` K )
4 cdlemk4.m
 |-  ./\ = ( meet ` K )
5 cdlemk4.a
 |-  A = ( Atoms ` K )
6 cdlemk4.h
 |-  H = ( LHyp ` K )
7 cdlemk4.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk4.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk4.z
 |-  Z = ( ( P .\/ ( R ` b ) ) ./\ ( ( N ` P ) .\/ ( R ` ( b o. `' F ) ) ) )
10 cdlemk4.y
 |-  Y = ( ( P .\/ ( R ` G ) ) ./\ ( Z .\/ ( R ` ( G o. `' b ) ) ) )
11 cdlemk4.x
 |-  X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) )
12 11 eqcomi
 |-  ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) = X
13 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( K e. HL /\ W e. H ) )
14 simpl2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) ) )
15 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( G e. T /\ G =/= ( _I |` B ) ) )
16 simpr1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> N e. T )
17 simpr2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( P e. A /\ -. P .<_ W ) )
18 simpr3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( R ` F ) = ( R ` N ) )
19 1 2 3 4 5 6 7 8 9 10 11 cdlemk35
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> X e. T )
20 13 14 15 16 17 18 19 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> X e. T )
21 11 20 eqeltrrid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) e. T )
22 7 fvexi
 |-  T e. _V
23 22 riotaclbBAD
 |-  ( E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) e. T )
24 21 23 sylibr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) )
25 nfriota1
 |-  F/_ z ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) )
26 11 25 nfcxfr
 |-  F/_ z X
27 nfcv
 |-  F/_ z T
28 nfv
 |-  F/ z ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) )
29 nfcv
 |-  F/_ z P
30 26 29 nffv
 |-  F/_ z ( X ` P )
31 30 nfeq1
 |-  F/ z ( X ` P ) = Y
32 28 31 nfim
 |-  F/ z ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y )
33 27 32 nfralw
 |-  F/ z A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y )
34 nfra1
 |-  F/ b A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y )
35 nfcv
 |-  F/_ b T
36 34 35 nfriota
 |-  F/_ b ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) )
37 11 36 nfcxfr
 |-  F/_ b X
38 37 nfeq2
 |-  F/ b z = X
39 fveq1
 |-  ( z = X -> ( z ` P ) = ( X ` P ) )
40 39 eqeq1d
 |-  ( z = X -> ( ( z ` P ) = Y <-> ( X ` P ) = Y ) )
41 40 imbi2d
 |-  ( z = X -> ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) ) )
42 38 41 ralbid
 |-  ( z = X -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) ) )
43 26 33 42 riota2f
 |-  ( ( X e. T /\ E! z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) <-> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) = X ) )
44 20 24 43 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) <-> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = Y ) ) = X ) )
45 12 44 mpbiri
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) )
46 rsp
 |-  ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) -> ( b e. T -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) ) )
47 45 46 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( b e. T -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( X ` P ) = Y ) ) )
48 47 impd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) -> ( X ` P ) = Y ) )
49 48 3impia
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( X ` P ) = Y )