Metamath Proof Explorer


Theorem cdlemk36

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. (Contributed by NM, 18-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B = Base K
cdlemk4.l ˙ = K
cdlemk4.j ˙ = join K
cdlemk4.m ˙ = meet K
cdlemk4.a A = Atoms K
cdlemk4.h H = LHyp K
cdlemk4.t T = LTrn K W
cdlemk4.r R = trL K W
cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
Assertion cdlemk36 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y

Proof

Step Hyp Ref Expression
1 cdlemk4.b B = Base K
2 cdlemk4.l ˙ = K
3 cdlemk4.j ˙ = join K
4 cdlemk4.m ˙ = meet K
5 cdlemk4.a A = Atoms K
6 cdlemk4.h H = LHyp K
7 cdlemk4.t T = LTrn K W
8 cdlemk4.r R = trL K W
9 cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
11 cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
12 11 eqcomi ι z T | b T b I B R b R F R b R G z P = Y = X
13 simpl1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H
14 simpl2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N F T F I B
15 simpl3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T G I B
16 simpr1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N N T
17 simpr2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P A ¬ P ˙ W
18 simpr3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R F = R N
19 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T
20 13 14 15 16 17 18 19 syl132anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T
21 11 20 eqeltrrid K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ι z T | b T b I B R b R F R b R G z P = Y T
22 7 fvexi T V
23 22 riotaclbBAD ∃! z T b T b I B R b R F R b R G z P = Y ι z T | b T b I B R b R F R b R G z P = Y T
24 21 23 sylibr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N ∃! z T b T b I B R b R F R b R G z P = Y
25 nfriota1 _ z ι z T | b T b I B R b R F R b R G z P = Y
26 11 25 nfcxfr _ z X
27 nfcv _ z T
28 nfv z b I B R b R F R b R G
29 nfcv _ z P
30 26 29 nffv _ z X P
31 30 nfeq1 z X P = Y
32 28 31 nfim z b I B R b R F R b R G X P = Y
33 27 32 nfralw z b T b I B R b R F R b R G X P = Y
34 nfra1 b b T b I B R b R F R b R G z P = Y
35 nfcv _ b T
36 34 35 nfriota _ b ι z T | b T b I B R b R F R b R G z P = Y
37 11 36 nfcxfr _ b X
38 37 nfeq2 b z = X
39 fveq1 z = X z P = X P
40 39 eqeq1d z = X z P = Y X P = Y
41 40 imbi2d z = X b I B R b R F R b R G z P = Y b I B R b R F R b R G X P = Y
42 38 41 ralbid z = X b T b I B R b R F R b R G z P = Y b T b I B R b R F R b R G X P = Y
43 26 33 42 riota2f X T ∃! z T b T b I B R b R F R b R G z P = Y b T b I B R b R F R b R G X P = Y ι z T | b T b I B R b R F R b R G z P = Y = X
44 20 24 43 syl2anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y ι z T | b T b I B R b R F R b R G z P = Y = X
45 12 44 mpbiri K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y
46 rsp b T b I B R b R F R b R G X P = Y b T b I B R b R F R b R G X P = Y
47 45 46 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y
48 47 impd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y
49 48 3impia K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P = Y