Metamath Proof Explorer
Description: A variable not free in a wff remains so in a restricted iota descriptor.
(Contributed by NM, 12-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
nfriota.1 |
|
|
|
nfriota.2 |
|
|
Assertion |
nfriota |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfriota.1 |
|
| 2 |
|
nfriota.2 |
|
| 3 |
|
nftru |
|
| 4 |
1
|
a1i |
|
| 5 |
2
|
a1i |
|
| 6 |
3 4 5
|
nfriotadw |
|
| 7 |
6
|
mptru |
|