Metamath Proof Explorer


Theorem nfriota

Description: A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011)

Ref Expression
Hypotheses nfriota.1 xφ
nfriota.2 _xA
Assertion nfriota _xιyA|φ

Proof

Step Hyp Ref Expression
1 nfriota.1 xφ
2 nfriota.2 _xA
3 nftru y
4 1 a1i xφ
5 2 a1i _xA
6 3 4 5 nfriotadw _xιyA|φ
7 6 mptru _xιyA|φ