Metamath Proof Explorer


Theorem cbvriota

Description: Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvriotaw when possible. (Contributed by NM, 18-Mar-2013) (Revised by Mario Carneiro, 15-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvriota.1 yφ
cbvriota.2 xψ
cbvriota.3 x=yφψ
Assertion cbvriota ιxA|φ=ιyA|ψ

Proof

Step Hyp Ref Expression
1 cbvriota.1 yφ
2 cbvriota.2 xψ
3 cbvriota.3 x=yφψ
4 eleq1w x=zxAzA
5 sbequ12 x=zφzxφ
6 4 5 anbi12d x=zxAφzAzxφ
7 nfv zxAφ
8 nfv xzA
9 nfs1v xzxφ
10 8 9 nfan xzAzxφ
11 6 7 10 cbviota ιx|xAφ=ιz|zAzxφ
12 eleq1w z=yzAyA
13 sbequ z=yzxφyxφ
14 2 3 sbie yxφψ
15 13 14 bitrdi z=yzxφψ
16 12 15 anbi12d z=yzAzxφyAψ
17 nfv yzA
18 1 nfsb yzxφ
19 17 18 nfan yzAzxφ
20 nfv zyAψ
21 16 19 20 cbviota ιz|zAzxφ=ιy|yAψ
22 11 21 eqtri ιx|xAφ=ιy|yAψ
23 df-riota ιxA|φ=ιx|xAφ
24 df-riota ιyA|ψ=ιy|yAψ
25 22 23 24 3eqtr4i ιxA|φ=ιyA|ψ