Metamath Proof Explorer


Theorem cbviota

Description: Change bound variables in a description binder. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbviotaw when possible. (Contributed by Andrew Salmon, 1-Aug-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbviota.1 x=yφψ
cbviota.2 yφ
cbviota.3 xψ
Assertion cbviota ιx|φ=ιy|ψ

Proof

Step Hyp Ref Expression
1 cbviota.1 x=yφψ
2 cbviota.2 yφ
3 cbviota.3 xψ
4 nfv zφx=w
5 nfs1v xzxφ
6 nfv xz=w
7 5 6 nfbi xzxφz=w
8 sbequ12 x=zφzxφ
9 equequ1 x=zx=wz=w
10 8 9 bibi12d x=zφx=wzxφz=w
11 4 7 10 cbvalv1 xφx=wzzxφz=w
12 2 nfsb yzxφ
13 nfv yz=w
14 12 13 nfbi yzxφz=w
15 nfv zψy=w
16 sbequ z=yzxφyxφ
17 3 1 sbie yxφψ
18 16 17 bitrdi z=yzxφψ
19 equequ1 z=yz=wy=w
20 18 19 bibi12d z=yzxφz=wψy=w
21 14 15 20 cbvalv1 zzxφz=wyψy=w
22 11 21 bitri xφx=wyψy=w
23 22 abbii w|xφx=w=w|yψy=w
24 23 unieqi w|xφx=w=w|yψy=w
25 dfiota2 ιx|φ=w|xφx=w
26 dfiota2 ιy|ψ=w|yψy=w
27 24 25 26 3eqtr4i ιx|φ=ιy|ψ