Metamath Proof Explorer


Theorem cbviotaw

Description: Change bound variables in a description binder. Version of cbviota with a disjoint variable condition, which does not require ax-13 . (Contributed by Andrew Salmon, 1-Aug-2011) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses cbviotaw.1 x=yφψ
cbviotaw.2 yφ
cbviotaw.3 xψ
Assertion cbviotaw ιx|φ=ιy|ψ

Proof

Step Hyp Ref Expression
1 cbviotaw.1 x=yφψ
2 cbviotaw.2 yφ
3 cbviotaw.3 xψ
4 nfv zφx=w
5 nfs1v xzxφ
6 nfv xz=w
7 5 6 nfbi xzxφz=w
8 sbequ12 x=zφzxφ
9 equequ1 x=zx=wz=w
10 8 9 bibi12d x=zφx=wzxφz=w
11 4 7 10 cbvalv1 xφx=wzzxφz=w
12 2 nfsbv yzxφ
13 nfv yz=w
14 12 13 nfbi yzxφz=w
15 nfv zψy=w
16 3 1 sbhypf z=yzxφψ
17 equequ1 z=yz=wy=w
18 16 17 bibi12d z=yzxφz=wψy=w
19 14 15 18 cbvalv1 zzxφz=wyψy=w
20 11 19 bitri xφx=wyψy=w
21 20 abbii w|xφx=w=w|yψy=w
22 21 unieqi w|xφx=w=w|yψy=w
23 dfiota2 ιx|φ=w|xφx=w
24 dfiota2 ιy|ψ=w|yψy=w
25 22 23 24 3eqtr4i ιx|φ=ιy|ψ