Metamath Proof Explorer


Theorem cbviotavw

Description: Change bound variables in a description binder. Version of cbviotav with a disjoint variable condition, which requires fewer axioms . (Contributed by Andrew Salmon, 1-Aug-2011) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbviotavw.1 x=yφψ
Assertion cbviotavw ιx|φ=ιy|ψ

Proof

Step Hyp Ref Expression
1 cbviotavw.1 x=yφψ
2 1 cbvabv x|φ=y|ψ
3 2 eqeq1i x|φ=zy|ψ=z
4 3 abbii z|x|φ=z=z|y|ψ=z
5 4 unieqi z|x|φ=z=z|y|ψ=z
6 df-iota ιx|φ=z|x|φ=z
7 df-iota ιy|ψ=z|y|ψ=z
8 5 6 7 3eqtr4i ιx|φ=ιy|ψ