| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cbvriota.1 |
|- F/ y ph |
| 2 |
|
cbvriota.2 |
|- F/ x ps |
| 3 |
|
cbvriota.3 |
|- ( x = y -> ( ph <-> ps ) ) |
| 4 |
|
eleq1w |
|- ( x = z -> ( x e. A <-> z e. A ) ) |
| 5 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
| 6 |
4 5
|
anbi12d |
|- ( x = z -> ( ( x e. A /\ ph ) <-> ( z e. A /\ [ z / x ] ph ) ) ) |
| 7 |
|
nfv |
|- F/ z ( x e. A /\ ph ) |
| 8 |
|
nfv |
|- F/ x z e. A |
| 9 |
|
nfs1v |
|- F/ x [ z / x ] ph |
| 10 |
8 9
|
nfan |
|- F/ x ( z e. A /\ [ z / x ] ph ) |
| 11 |
6 7 10
|
cbviota |
|- ( iota x ( x e. A /\ ph ) ) = ( iota z ( z e. A /\ [ z / x ] ph ) ) |
| 12 |
|
eleq1w |
|- ( z = y -> ( z e. A <-> y e. A ) ) |
| 13 |
|
sbequ |
|- ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) ) |
| 14 |
2 3
|
sbie |
|- ( [ y / x ] ph <-> ps ) |
| 15 |
13 14
|
bitrdi |
|- ( z = y -> ( [ z / x ] ph <-> ps ) ) |
| 16 |
12 15
|
anbi12d |
|- ( z = y -> ( ( z e. A /\ [ z / x ] ph ) <-> ( y e. A /\ ps ) ) ) |
| 17 |
|
nfv |
|- F/ y z e. A |
| 18 |
1
|
nfsb |
|- F/ y [ z / x ] ph |
| 19 |
17 18
|
nfan |
|- F/ y ( z e. A /\ [ z / x ] ph ) |
| 20 |
|
nfv |
|- F/ z ( y e. A /\ ps ) |
| 21 |
16 19 20
|
cbviota |
|- ( iota z ( z e. A /\ [ z / x ] ph ) ) = ( iota y ( y e. A /\ ps ) ) |
| 22 |
11 21
|
eqtri |
|- ( iota x ( x e. A /\ ph ) ) = ( iota y ( y e. A /\ ps ) ) |
| 23 |
|
df-riota |
|- ( iota_ x e. A ph ) = ( iota x ( x e. A /\ ph ) ) |
| 24 |
|
df-riota |
|- ( iota_ y e. A ps ) = ( iota y ( y e. A /\ ps ) ) |
| 25 |
22 23 24
|
3eqtr4i |
|- ( iota_ x e. A ph ) = ( iota_ y e. A ps ) |