| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk4.b |
|
| 2 |
|
cdlemk4.l |
|
| 3 |
|
cdlemk4.j |
|
| 4 |
|
cdlemk4.m |
|
| 5 |
|
cdlemk4.a |
|
| 6 |
|
cdlemk4.h |
|
| 7 |
|
cdlemk4.t |
|
| 8 |
|
cdlemk4.r |
|
| 9 |
|
cdlemk4.z |
|
| 10 |
|
cdlemk4.y |
|
| 11 |
|
cdlemk4.x |
|
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk36 |
|
| 13 |
|
simp11l |
|
| 14 |
13
|
hllatd |
|
| 15 |
|
simp22l |
|
| 16 |
|
simp11 |
|
| 17 |
|
simp13l |
|
| 18 |
|
simp13r |
|
| 19 |
1 5 6 7 8
|
trlnidat |
|
| 20 |
16 17 18 19
|
syl3anc |
|
| 21 |
1 3 5
|
hlatjcl |
|
| 22 |
13 15 20 21
|
syl3anc |
|
| 23 |
|
simp3l |
|
| 24 |
|
simp3r1 |
|
| 25 |
1 5 6 7 8
|
trlnidat |
|
| 26 |
16 23 24 25
|
syl3anc |
|
| 27 |
1 3 5
|
hlatjcl |
|
| 28 |
13 15 26 27
|
syl3anc |
|
| 29 |
|
simp21 |
|
| 30 |
2 5 6 7
|
ltrnat |
|
| 31 |
16 29 15 30
|
syl3anc |
|
| 32 |
1 5
|
atbase |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
simp12l |
|
| 35 |
6 7
|
ltrncnv |
|
| 36 |
16 34 35
|
syl2anc |
|
| 37 |
6 7
|
ltrnco |
|
| 38 |
16 23 36 37
|
syl3anc |
|
| 39 |
1 6 7 8
|
trlcl |
|
| 40 |
16 38 39
|
syl2anc |
|
| 41 |
1 3
|
latjcl |
|
| 42 |
14 33 40 41
|
syl3anc |
|
| 43 |
1 4
|
latmcl |
|
| 44 |
14 28 42 43
|
syl3anc |
|
| 45 |
9 44
|
eqeltrid |
|
| 46 |
6 7
|
ltrncnv |
|
| 47 |
16 23 46
|
syl2anc |
|
| 48 |
6 7
|
ltrnco |
|
| 49 |
16 17 47 48
|
syl3anc |
|
| 50 |
1 6 7 8
|
trlcl |
|
| 51 |
16 49 50
|
syl2anc |
|
| 52 |
1 3
|
latjcl |
|
| 53 |
14 45 51 52
|
syl3anc |
|
| 54 |
1 2 4
|
latmle1 |
|
| 55 |
14 22 53 54
|
syl3anc |
|
| 56 |
10 55
|
eqbrtrid |
|
| 57 |
12 56
|
eqbrtrd |
|