Metamath Proof Explorer


Theorem cdlemk38

Description: Part of proof of Lemma K of Crawley p. 118. Line 31, p. 119. TODO: derive more directly with r19.23 ? (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B = Base K
cdlemk4.l ˙ = K
cdlemk4.j ˙ = join K
cdlemk4.m ˙ = meet K
cdlemk4.a A = Atoms K
cdlemk4.h H = LHyp K
cdlemk4.t T = LTrn K W
cdlemk4.r R = trL K W
cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
Assertion cdlemk38 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X P ˙ P ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemk4.b B = Base K
2 cdlemk4.l ˙ = K
3 cdlemk4.j ˙ = join K
4 cdlemk4.m ˙ = meet K
5 cdlemk4.a A = Atoms K
6 cdlemk4.h H = LHyp K
7 cdlemk4.t T = LTrn K W
8 cdlemk4.r R = trL K W
9 cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
11 cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
12 1 6 7 8 cdlemftr2 K HL W H b T b I B R b R F R b R G
13 12 3ad2ant1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G
14 nfv b K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N
15 nfra1 b b T b I B R b R F R b R G z P = Y
16 nfcv _ b T
17 15 16 nfriota _ b ι z T | b T b I B R b R F R b R G z P = Y
18 11 17 nfcxfr _ b X
19 nfcv _ b P
20 18 19 nffv _ b X P
21 nfcv _ b ˙
22 nfcv _ b P ˙ R G
23 20 21 22 nfbr b X P ˙ P ˙ R G
24 simpl1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G K HL W H
25 simpl21 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G F T F I B
26 simpl22 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G T G I B
27 simpl23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G N T
28 simpl3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G P A ¬ P ˙ W
29 simpl3r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G R F = R N
30 simpr K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G b T b I B R b R F R b R G
31 1 2 3 4 5 6 7 8 9 10 11 cdlemk37 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G
32 24 25 26 27 28 29 30 31 syl331anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G
33 32 exp32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G
34 14 23 33 rexlimd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G X P ˙ P ˙ R G
35 13 34 mpd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X P ˙ P ˙ R G