Metamath Proof Explorer


Theorem cdlemk39

Description: Part of proof of Lemma K of Crawley p. 118. Line 31, p. 119. Trace-preserving property of tau, represented by X . (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses cdlemk4.b B = Base K
cdlemk4.l ˙ = K
cdlemk4.j ˙ = join K
cdlemk4.m ˙ = meet K
cdlemk4.a A = Atoms K
cdlemk4.h H = LHyp K
cdlemk4.t T = LTrn K W
cdlemk4.r R = trL K W
cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
Assertion cdlemk39 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R X ˙ R G

Proof

Step Hyp Ref Expression
1 cdlemk4.b B = Base K
2 cdlemk4.l ˙ = K
3 cdlemk4.j ˙ = join K
4 cdlemk4.m ˙ = meet K
5 cdlemk4.a A = Atoms K
6 cdlemk4.h H = LHyp K
7 cdlemk4.t T = LTrn K W
8 cdlemk4.r R = trL K W
9 cdlemk4.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk4.y Y = P ˙ R G ˙ Z ˙ R G b -1
11 cdlemk4.x X = ι z T | b T b I B R b R F R b R G z P = Y
12 simp1l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL
13 simp3ll K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P A
14 simp1 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K HL W H
15 simp22l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G T
16 simp22r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N G I B
17 1 5 6 7 8 trlnidat K HL W H G T G I B R G A
18 14 15 16 17 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R G A
19 2 3 5 hlatlej1 K HL P A R G A P ˙ P ˙ R G
20 12 13 18 19 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ P ˙ R G
21 1 2 3 4 5 6 7 8 9 10 11 cdlemk38 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X P ˙ P ˙ R G
22 12 hllatd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N K Lat
23 1 5 atbase P A P B
24 13 23 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P B
25 1 2 3 4 5 6 7 8 9 10 11 cdlemk35 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X T
26 2 5 6 7 ltrnat K HL W H X T P A X P A
27 14 25 13 26 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X P A
28 1 5 atbase X P A X P B
29 27 28 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N X P B
30 1 3 5 hlatjcl K HL P A R G A P ˙ R G B
31 12 13 18 30 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ R G B
32 1 2 3 latjle12 K Lat P B X P B P ˙ R G B P ˙ P ˙ R G X P ˙ P ˙ R G P ˙ X P ˙ P ˙ R G
33 22 24 29 31 32 syl13anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ P ˙ R G X P ˙ P ˙ R G P ˙ X P ˙ P ˙ R G
34 20 21 33 mpbi2and K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ X P ˙ P ˙ R G
35 1 3 5 hlatjcl K HL P A X P A P ˙ X P B
36 12 13 27 35 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ X P B
37 simp1r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N W H
38 1 6 lhpbase W H W B
39 37 38 syl K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N W B
40 1 2 4 latmlem1 K Lat P ˙ X P B P ˙ R G B W B P ˙ X P ˙ P ˙ R G P ˙ X P ˙ W ˙ P ˙ R G ˙ W
41 22 36 31 39 40 syl13anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ X P ˙ P ˙ R G P ˙ X P ˙ W ˙ P ˙ R G ˙ W
42 34 41 mpd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P ˙ X P ˙ W ˙ P ˙ R G ˙ W
43 simp3l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N P A ¬ P ˙ W
44 2 3 4 5 6 7 8 trlval2 K HL W H X T P A ¬ P ˙ W R X = P ˙ X P ˙ W
45 14 25 43 44 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R X = P ˙ X P ˙ W
46 2 3 4 5 6 7 8 trlval5 K HL W H G T P A ¬ P ˙ W R G = P ˙ R G ˙ W
47 14 15 43 46 syl3anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R G = P ˙ R G ˙ W
48 42 45 47 3brtr4d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N R X ˙ R G