Metamath Proof Explorer


Theorem trlval5

Description: The value of the trace of a lattice translation in terms of itself. (Contributed by NM, 19-Jul-2013)

Ref Expression
Hypotheses trlval3.l ˙=K
trlval3.j ˙=joinK
trlval3.m ˙=meetK
trlval3.a A=AtomsK
trlval3.h H=LHypK
trlval3.t T=LTrnKW
trlval3.r R=trLKW
Assertion trlval5 KHLWHFTPA¬P˙WRF=P˙RF˙W

Proof

Step Hyp Ref Expression
1 trlval3.l ˙=K
2 trlval3.j ˙=joinK
3 trlval3.m ˙=meetK
4 trlval3.a A=AtomsK
5 trlval3.h H=LHypK
6 trlval3.t T=LTrnKW
7 trlval3.r R=trLKW
8 1 2 3 4 5 6 7 trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W
9 1 2 4 5 6 7 trljat1 KHLWHFTPA¬P˙WP˙RF=P˙FP
10 9 oveq1d KHLWHFTPA¬P˙WP˙RF˙W=P˙FP˙W
11 8 10 eqtr4d KHLWHFTPA¬P˙WRF=P˙RF˙W