| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemk5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemk5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemk5.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cdlemk5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
cdlemk5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 7 |
|
cdlemk5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
cdlemk5.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
cdlemk5.z |
⊢ 𝑍 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑏 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑏 ∘ ◡ 𝐹 ) ) ) ) |
| 10 |
|
cdlemk5.y |
⊢ 𝑌 = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑔 ) ) ∧ ( 𝑍 ∨ ( 𝑅 ‘ ( 𝑔 ∘ ◡ 𝑏 ) ) ) ) |
| 11 |
|
cdlemk5.x |
⊢ 𝑋 = ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) |
| 12 |
|
cdlemk5.u |
⊢ 𝑈 = ( 𝑔 ∈ 𝑇 ↦ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ) |
| 13 |
|
cdlemk5.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
vex |
⊢ 𝑔 ∈ V |
| 16 |
|
riotaex |
⊢ ( ℩ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝑔 ) ) → ( 𝑧 ‘ 𝑃 ) = 𝑌 ) ) ∈ V |
| 17 |
11 16
|
eqeltri |
⊢ 𝑋 ∈ V |
| 18 |
15 17
|
ifex |
⊢ if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V |
| 19 |
18
|
rgenw |
⊢ ∀ 𝑔 ∈ 𝑇 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V |
| 20 |
12
|
fnmpt |
⊢ ( ∀ 𝑔 ∈ 𝑇 if ( 𝐹 = 𝑁 , 𝑔 , 𝑋 ) ∈ V → 𝑈 Fn 𝑇 ) |
| 21 |
19 20
|
mp1i |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑈 Fn 𝑇 ) |
| 22 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 23 |
|
simpl2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
| 24 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
| 25 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑁 ∈ 𝑇 ) |
| 26 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → 𝑓 ∈ 𝑇 ) |
| 27 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk35u |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ 𝑓 ) ∈ 𝑇 ) |
| 29 |
22 23 24 25 26 27 28
|
syl231anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑈 ‘ 𝑓 ) ∈ 𝑇 ) |
| 30 |
29
|
ralrimiva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) ∈ 𝑇 ) |
| 31 |
|
ffnfv |
⊢ ( 𝑈 : 𝑇 ⟶ 𝑇 ↔ ( 𝑈 Fn 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) ∈ 𝑇 ) ) |
| 32 |
21 30 31
|
sylanbrc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑈 : 𝑇 ⟶ 𝑇 ) |
| 33 |
|
simp11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) |
| 34 |
|
simp12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
| 35 |
|
simp2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → 𝑓 ∈ 𝑇 ) |
| 36 |
|
simp3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ℎ ∈ 𝑇 ) |
| 37 |
|
simp13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk55u |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑈 ‘ ( 𝑓 ∘ ℎ ) ) = ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑈 ‘ ℎ ) ) ) |
| 39 |
33 34 35 36 37 38
|
syl131anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑈 ‘ ( 𝑓 ∘ ℎ ) ) = ( ( 𝑈 ‘ 𝑓 ) ∘ ( 𝑈 ‘ ℎ ) ) ) |
| 40 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) |
| 41 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemk39u |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑅 ‘ ( 𝑈 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) |
| 42 |
40 23 26 27 41
|
syl121anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑈 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) |
| 43 |
2 6 7 8 13 14 32 39 42
|
istendod |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑈 ∈ 𝐸 ) |