Metamath Proof Explorer


Theorem cdlemk19w

Description: Use a fixed element to eliminate P in cdlemk19u . (Contributed by NM, 1-Aug-2013)

Ref Expression
Hypotheses cdlemk6.b B=BaseK
cdlemk6.j ˙=joinK
cdlemk6.m ˙=meetK
cdlemk6.o ˙=ocK
cdlemk6.a A=AtomsK
cdlemk6.h H=LHypK
cdlemk6.t T=LTrnKW
cdlemk6.r R=trLKW
cdlemk6.p P=˙W
cdlemk6.z Z=P˙Rb˙NP˙RbF-1
cdlemk6.y Y=P˙Rg˙Z˙Rgb-1
cdlemk6.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk6.u U=gTifF=NgX
Assertion cdlemk19w KHLWHFTNTRF=RNUF=N

Proof

Step Hyp Ref Expression
1 cdlemk6.b B=BaseK
2 cdlemk6.j ˙=joinK
3 cdlemk6.m ˙=meetK
4 cdlemk6.o ˙=ocK
5 cdlemk6.a A=AtomsK
6 cdlemk6.h H=LHypK
7 cdlemk6.t T=LTrnKW
8 cdlemk6.r R=trLKW
9 cdlemk6.p P=˙W
10 cdlemk6.z Z=P˙Rb˙NP˙RbF-1
11 cdlemk6.y Y=P˙Rg˙Z˙Rgb-1
12 cdlemk6.x X=ιzT|bTbIBRbRFRbRgzP=Y
13 cdlemk6.u U=gTifF=NgX
14 3simpb KHLWHFTNTRF=RNKHLWHRF=RN
15 simp2 KHLWHFTNTRF=RNFTNT
16 eqid K=K
17 16 4 5 6 lhpocnel KHLWH˙WA¬˙WKW
18 17 3ad2ant1 KHLWHFTNTRF=RN˙WA¬˙WKW
19 9 eleq1i PA˙WA
20 9 breq1i PKW˙WKW
21 20 notbii ¬PKW¬˙WKW
22 19 21 anbi12i PA¬PKW˙WA¬˙WKW
23 18 22 sylibr KHLWHFTNTRF=RNPA¬PKW
24 1 16 2 3 5 6 7 8 10 11 12 13 cdlemk19u KHLWHRF=RNFTNTPA¬PKWUF=N
25 14 15 23 24 syl3anc KHLWHFTNTRF=RNUF=N