Description: Part of Lemma K of Crawley p. 118. Line 12, p. 120, "f (exponent) tau = k". We represent f, k, tau with F , N , U . (Contributed by NM, 31-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
cdlemk5.u | |
||
Assertion | cdlemk19u | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | cdlemk5.u | |
|
13 | simp1l | |
|
14 | simp1 | |
|
15 | simp2l | |
|
16 | simp2r | |
|
17 | simp3 | |
|
18 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemk35u | |
19 | 14 15 16 15 17 18 | syl131anc | |
20 | simpr | |
|
21 | simpl2l | |
|
22 | 11 12 | cdlemk40t | |
23 | 20 21 22 | syl2anc | |
24 | 23 | fveq1d | |
25 | fveq1 | |
|
26 | 25 | adantl | |
27 | 24 26 | eqtrd | |
28 | simpl1 | |
|
29 | simpl2l | |
|
30 | simpr | |
|
31 | simpl2r | |
|
32 | simpl3 | |
|
33 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemk19u1 | |
34 | 28 29 30 31 32 33 | syl131anc | |
35 | 27 34 | pm2.61dane | |
36 | 2 5 6 7 | cdlemd | |
37 | 13 19 16 17 35 36 | syl311anc | |