Metamath Proof Explorer


Theorem cdlemk19u

Description: Part of Lemma K of Crawley p. 118. Line 12, p. 120, "f (exponent) tau = k". We represent f, k, tau with F , N , U . (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
cdlemk5.u U=gTifF=NgX
Assertion cdlemk19u KHLWHRF=RNFTNTPA¬P˙WUF=N

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 cdlemk5.u U=gTifF=NgX
13 simp1l KHLWHRF=RNFTNTPA¬P˙WKHLWH
14 simp1 KHLWHRF=RNFTNTPA¬P˙WKHLWHRF=RN
15 simp2l KHLWHRF=RNFTNTPA¬P˙WFT
16 simp2r KHLWHRF=RNFTNTPA¬P˙WNT
17 simp3 KHLWHRF=RNFTNTPA¬P˙WPA¬P˙W
18 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk35u KHLWHRF=RNFTNTFTPA¬P˙WUFT
19 14 15 16 15 17 18 syl131anc KHLWHRF=RNFTNTPA¬P˙WUFT
20 simpr KHLWHRF=RNFTNTPA¬P˙WF=NF=N
21 simpl2l KHLWHRF=RNFTNTPA¬P˙WF=NFT
22 11 12 cdlemk40t F=NFTUF=F
23 20 21 22 syl2anc KHLWHRF=RNFTNTPA¬P˙WF=NUF=F
24 23 fveq1d KHLWHRF=RNFTNTPA¬P˙WF=NUFP=FP
25 fveq1 F=NFP=NP
26 25 adantl KHLWHRF=RNFTNTPA¬P˙WF=NFP=NP
27 24 26 eqtrd KHLWHRF=RNFTNTPA¬P˙WF=NUFP=NP
28 simpl1 KHLWHRF=RNFTNTPA¬P˙WFNKHLWHRF=RN
29 simpl2l KHLWHRF=RNFTNTPA¬P˙WFNFT
30 simpr KHLWHRF=RNFTNTPA¬P˙WFNFN
31 simpl2r KHLWHRF=RNFTNTPA¬P˙WFNNT
32 simpl3 KHLWHRF=RNFTNTPA¬P˙WFNPA¬P˙W
33 1 2 3 4 5 6 7 8 9 10 11 12 cdlemk19u1 KHLWHRF=RNFTFNNTPA¬P˙WUFP=NP
34 28 29 30 31 32 33 syl131anc KHLWHRF=RNFTNTPA¬P˙WFNUFP=NP
35 27 34 pm2.61dane KHLWHRF=RNFTNTPA¬P˙WUFP=NP
36 2 5 6 7 cdlemd KHLWHUFTNTPA¬P˙WUFP=NPUF=N
37 13 19 16 17 35 36 syl311anc KHLWHRF=RNFTNTPA¬P˙WUF=N