Metamath Proof Explorer


Theorem isgrpid2

Description: Properties showing that an element Z is the identity element of a group. (Contributed by NM, 7-Aug-2013)

Ref Expression
Hypotheses grpinveu.b B=BaseG
grpinveu.p +˙=+G
grpinveu.o 0˙=0G
Assertion isgrpid2 GGrpZBZ+˙Z=Z0˙=Z

Proof

Step Hyp Ref Expression
1 grpinveu.b B=BaseG
2 grpinveu.p +˙=+G
3 grpinveu.o 0˙=0G
4 1 2 3 grpid GGrpZBZ+˙Z=Z0˙=Z
5 4 biimpd GGrpZBZ+˙Z=Z0˙=Z
6 5 expimpd GGrpZBZ+˙Z=Z0˙=Z
7 1 3 grpidcl GGrp0˙B
8 1 2 3 grplid GGrp0˙B0˙+˙0˙=0˙
9 7 8 mpdan GGrp0˙+˙0˙=0˙
10 7 9 jca GGrp0˙B0˙+˙0˙=0˙
11 eleq1 0˙=Z0˙BZB
12 id 0˙=Z0˙=Z
13 12 12 oveq12d 0˙=Z0˙+˙0˙=Z+˙Z
14 13 12 eqeq12d 0˙=Z0˙+˙0˙=0˙Z+˙Z=Z
15 11 14 anbi12d 0˙=Z0˙B0˙+˙0˙=0˙ZBZ+˙Z=Z
16 10 15 syl5ibcom GGrp0˙=ZZBZ+˙Z=Z
17 6 16 impbid GGrpZBZ+˙Z=Z0˙=Z