| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoinv.b |
|- B = ( Base ` K ) |
| 2 |
|
tendoinv.h |
|- H = ( LHyp ` K ) |
| 3 |
|
tendoinv.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
tendoinv.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 5 |
|
tendoinv.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
| 6 |
|
tendoinv.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 7 |
|
tendoinv.f |
|- F = ( Scalar ` U ) |
| 8 |
|
tendoinv.n |
|- N = ( invr ` F ) |
| 9 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 10 |
2 9 6 7
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> F = ( ( EDRing ` K ) ` W ) ) |
| 11 |
2 9
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
| 12 |
10 11
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> F e. DivRing ) |
| 13 |
12
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> F e. DivRing ) |
| 14 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. E ) |
| 15 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 16 |
2 4 6 7 15
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` F ) = E ) |
| 17 |
16
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( Base ` F ) = E ) |
| 18 |
14 17
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. ( Base ` F ) ) |
| 19 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= O ) |
| 20 |
10
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) ) |
| 21 |
|
eqid |
|- ( 0g ` ( ( EDRing ` K ) ` W ) ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) |
| 22 |
1 2 3 9 5 21
|
erng0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( ( EDRing ` K ) ` W ) ) = O ) |
| 23 |
20 22
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = O ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( 0g ` F ) = O ) |
| 25 |
19 24
|
neeqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= ( 0g ` F ) ) |
| 26 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
| 27 |
15 26 8
|
drnginvrcl |
|- ( ( F e. DivRing /\ S e. ( Base ` F ) /\ S =/= ( 0g ` F ) ) -> ( N ` S ) e. ( Base ` F ) ) |
| 28 |
13 18 25 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) e. ( Base ` F ) ) |
| 29 |
28 17
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) e. E ) |
| 30 |
15 26 8
|
drnginvrn0 |
|- ( ( F e. DivRing /\ S e. ( Base ` F ) /\ S =/= ( 0g ` F ) ) -> ( N ` S ) =/= ( 0g ` F ) ) |
| 31 |
13 18 25 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) =/= ( 0g ` F ) ) |
| 32 |
31 24
|
neeqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) =/= O ) |
| 33 |
29 32
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( ( N ` S ) e. E /\ ( N ` S ) =/= O ) ) |