Step |
Hyp |
Ref |
Expression |
1 |
|
tendoinv.b |
|- B = ( Base ` K ) |
2 |
|
tendoinv.h |
|- H = ( LHyp ` K ) |
3 |
|
tendoinv.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
tendoinv.e |
|- E = ( ( TEndo ` K ) ` W ) |
5 |
|
tendoinv.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
6 |
|
tendoinv.u |
|- U = ( ( DVecH ` K ) ` W ) |
7 |
|
tendoinv.f |
|- F = ( Scalar ` U ) |
8 |
|
tendoinv.n |
|- N = ( invr ` F ) |
9 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
10 |
2 9 6 7
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> F = ( ( EDRing ` K ) ` W ) ) |
11 |
2 9
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
12 |
10 11
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> F e. DivRing ) |
13 |
12
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> F e. DivRing ) |
14 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. E ) |
15 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
16 |
2 4 6 7 15
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` F ) = E ) |
17 |
16
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( Base ` F ) = E ) |
18 |
14 17
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S e. ( Base ` F ) ) |
19 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= O ) |
20 |
10
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) ) |
21 |
|
eqid |
|- ( 0g ` ( ( EDRing ` K ) ` W ) ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) |
22 |
1 2 3 9 5 21
|
erng0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( ( EDRing ` K ) ` W ) ) = O ) |
23 |
20 22
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` F ) = O ) |
24 |
23
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( 0g ` F ) = O ) |
25 |
19 24
|
neeqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> S =/= ( 0g ` F ) ) |
26 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
27 |
15 26 8
|
drnginvrcl |
|- ( ( F e. DivRing /\ S e. ( Base ` F ) /\ S =/= ( 0g ` F ) ) -> ( N ` S ) e. ( Base ` F ) ) |
28 |
13 18 25 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) e. ( Base ` F ) ) |
29 |
28 17
|
eleqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) e. E ) |
30 |
15 26 8
|
drnginvrn0 |
|- ( ( F e. DivRing /\ S e. ( Base ` F ) /\ S =/= ( 0g ` F ) ) -> ( N ` S ) =/= ( 0g ` F ) ) |
31 |
13 18 25 30
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) =/= ( 0g ` F ) ) |
32 |
31 24
|
neeqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( N ` S ) =/= O ) |
33 |
29 32
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ S =/= O ) -> ( ( N ` S ) e. E /\ ( N ` S ) =/= O ) ) |